lkml.org 
[lkml]   [2019]   [Sep]   [3]   [last100]   RSS Feed
Views: [wrap][no wrap]   [headers]  [forward] 
 
Messages in this thread
Patch in this message
/
From
Subject[PATCH] sched: rt: Make RT capacity aware
Date
Capacity Awareness refers to the fact that on heterogeneous systems
(like Arm big.LITTLE), the capacity of the CPUs is not uniform, hence
when placing tasks we need to be aware of this difference of CPU
capacities.

In such scenarios we want to ensure that the selected CPU has enough
capacity to meet the requirement of the running task. Enough capacity
means here that capacity_orig_of(cpu) >= task.requirement.

The definition of task.requirement is dependent on the scheduling class.

For CFS, utilization is used to select a CPU that has >= capacity value
than the cfs_task.util.

capacity_orig_of(cpu) >= cfs_task.util

DL isn't capacity aware at the moment but can make use of the bandwidth
reservation to implement that in a similar manner CFS uses utilization.
The following patchset implements that:

https://lore.kernel.org/lkml/20190506044836.2914-1-luca.abeni@santannapisa.it/

capacity_orig_of(cpu)/SCHED_CAPACITY >= dl_deadline/dl_runtime

For RT we don't have a per task utilization signal and we lack any
information in general about what performance requirement the RT task
needs. But with the introduction of uclamp, RT tasks can now control
that by setting uclamp_min to guarantee a minimum performance point.

ATM the uclamp value are only used for frequency selection; but on
heterogeneous systems this is not enough and we need to ensure that the
capacity of the CPU is >= uclamp_min. Which is what implemented here.

capacity_orig_of(cpu) >= rt_task.uclamp_min

Note that by default uclamp.min is 1024, which means that RT tasks will
always be biased towards the big CPUs, which make for a better more
predictable behavior for the default case.

Must stress that the bias acts as a hint rather than a definite
placement strategy. For example, if all big cores are busy executing
other RT tasks we can't guarantee that a new RT task will be placed
there.

On non-heterogeneous systems the original behavior of RT should be
retained. Similarly if uclamp is not selected in the config.

Signed-off-by: Qais Yousef <qais.yousef@arm.com>
---

The logic is not perfect. For example if a 'small' task is occupying a big CPU
and another big task wakes up; we won't force migrate the small task to clear
the big cpu for the big task that woke up.

IOW, the logic is best effort and can't give hard guarantees. But improves the
current situation where a task can randomly end up on any CPU regardless of
what it needs. ie: without this patch an RT task can wake up on a big or small
CPU, but with this it will always wake up on a big CPU (assuming the big CPUs
aren't overloaded) - hence provide a consistent performance.

I'm looking at ways to improve this best effort, but this patch should be
a good start to discuss our Capacity Awareness requirement. There's a trade-off
of complexity to be made here and I'd like to keep things as simple as
possible and build on top as needed.


kernel/sched/rt.c | 112 +++++++++++++++++++++++++++++++++++++---------
1 file changed, 92 insertions(+), 20 deletions(-)

diff --git a/kernel/sched/rt.c b/kernel/sched/rt.c
index a532558a5176..7c3bcbef692b 100644
--- a/kernel/sched/rt.c
+++ b/kernel/sched/rt.c
@@ -436,6 +436,45 @@ static inline int on_rt_rq(struct sched_rt_entity *rt_se)
return rt_se->on_rq;
}

+#ifdef CONFIG_UCLAMP_TASK
+/*
+ * Verify the fitness of task @p to run on @cpu taking into account the uclamp
+ * settings.
+ *
+ * This check is only important for heterogeneous systems where uclamp_min value
+ * is higher than the capacity of a @cpu. For non-heterogeneous system this
+ * function will always return true.
+ *
+ * The function will return true if the capacity of the @cpu is >= the
+ * uclamp_min and false otherwise.
+ *
+ * Note that uclamp_min will be clamped to uclamp_max if uclamp_min
+ * > uclamp_max.
+ */
+static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
+{
+ unsigned int min_cap;
+ unsigned int max_cap;
+ unsigned int cpu_cap;
+
+ /* Only heterogeneous systems can benefit from this check */
+ if (!static_branch_unlikely(&sched_asym_cpucapacity))
+ return true;
+
+ min_cap = uclamp_eff_value(p, UCLAMP_MIN);
+ max_cap = uclamp_eff_value(p, UCLAMP_MAX);
+
+ cpu_cap = capacity_orig_of(cpu);
+
+ return cpu_cap >= min(min_cap, max_cap);
+}
+#else
+static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
+{
+ return true;
+}
+#endif
+
#ifdef CONFIG_RT_GROUP_SCHED

static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
@@ -1390,6 +1429,7 @@ select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags)
{
struct task_struct *curr;
struct rq *rq;
+ bool test;

/* For anything but wake ups, just return the task_cpu */
if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
@@ -1421,10 +1461,16 @@ select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags)
*
* This test is optimistic, if we get it wrong the load-balancer
* will have to sort it out.
+ *
+ * We take into account the capacity of the cpu to ensure it fits the
+ * requirement of the task - which is only important on heterogeneous
+ * systems like big.LITTLE.
*/
- if (curr && unlikely(rt_task(curr)) &&
- (curr->nr_cpus_allowed < 2 ||
- curr->prio <= p->prio)) {
+ test = curr &&
+ unlikely(rt_task(curr)) &&
+ (curr->nr_cpus_allowed < 2 || curr->prio <= p->prio);
+
+ if (test || !rt_task_fits_capacity(p, cpu)) {
int target = find_lowest_rq(p);

/*
@@ -1614,7 +1660,8 @@ static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
{
if (!task_running(rq, p) &&
- cpumask_test_cpu(cpu, p->cpus_ptr))
+ cpumask_test_cpu(cpu, p->cpus_ptr) &&
+ rt_task_fits_capacity(p, cpu))
return 1;

return 0;
@@ -1648,6 +1695,7 @@ static int find_lowest_rq(struct task_struct *task)
struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
int this_cpu = smp_processor_id();
int cpu = task_cpu(task);
+ bool test;

/* Make sure the mask is initialized first */
if (unlikely(!lowest_mask))
@@ -1666,16 +1714,23 @@ static int find_lowest_rq(struct task_struct *task)
*
* We prioritize the last CPU that the task executed on since
* it is most likely cache-hot in that location.
+ *
+ * Assuming the task still fits the capacity of the last CPU.
*/
- if (cpumask_test_cpu(cpu, lowest_mask))
+ if (cpumask_test_cpu(cpu, lowest_mask) &&
+ rt_task_fits_capacity(task, cpu)) {
return cpu;
+ }

/*
* Otherwise, we consult the sched_domains span maps to figure
* out which CPU is logically closest to our hot cache data.
*/
- if (!cpumask_test_cpu(this_cpu, lowest_mask))
- this_cpu = -1; /* Skip this_cpu opt if not among lowest */
+ if (!cpumask_test_cpu(this_cpu, lowest_mask) ||
+ !rt_task_fits_capacity(task, this_cpu)) {
+ /* Skip this_cpu opt if not among lowest or doesn't fit */
+ this_cpu = -1;
+ }

rcu_read_lock();
for_each_domain(cpu, sd) {
@@ -1692,11 +1747,15 @@ static int find_lowest_rq(struct task_struct *task)
return this_cpu;
}

- best_cpu = cpumask_first_and(lowest_mask,
- sched_domain_span(sd));
- if (best_cpu < nr_cpu_ids) {
- rcu_read_unlock();
- return best_cpu;
+ for_each_cpu_and(best_cpu, lowest_mask,
+ sched_domain_span(sd)) {
+ if (best_cpu >= nr_cpu_ids)
+ break;
+
+ if (rt_task_fits_capacity(task, best_cpu)) {
+ rcu_read_unlock();
+ return best_cpu;
+ }
}
}
}
@@ -1711,7 +1770,15 @@ static int find_lowest_rq(struct task_struct *task)
return this_cpu;

cpu = cpumask_any(lowest_mask);
- if (cpu < nr_cpu_ids)
+
+ /*
+ * Make sure that the fitness on @cpu doesn't change compared to the
+ * cpu we're currently running on.
+ */
+ test = rt_task_fits_capacity(task, cpu) ==
+ rt_task_fits_capacity(task, task_cpu(task));
+
+ if (cpu < nr_cpu_ids && test)
return cpu;

return -1;
@@ -2160,12 +2227,14 @@ static void pull_rt_task(struct rq *this_rq)
*/
static void task_woken_rt(struct rq *rq, struct task_struct *p)
{
- if (!task_running(rq, p) &&
- !test_tsk_need_resched(rq->curr) &&
- p->nr_cpus_allowed > 1 &&
- (dl_task(rq->curr) || rt_task(rq->curr)) &&
- (rq->curr->nr_cpus_allowed < 2 ||
- rq->curr->prio <= p->prio))
+ bool need_to_push = !task_running(rq, p) &&
+ !test_tsk_need_resched(rq->curr) &&
+ p->nr_cpus_allowed > 1 &&
+ (dl_task(rq->curr) || rt_task(rq->curr)) &&
+ (rq->curr->nr_cpus_allowed < 2 ||
+ rq->curr->prio <= p->prio);
+
+ if (need_to_push || !rt_task_fits_capacity(p, cpu_of(rq)))
push_rt_tasks(rq);
}

@@ -2237,7 +2306,10 @@ static void switched_to_rt(struct rq *rq, struct task_struct *p)
*/
if (task_on_rq_queued(p) && rq->curr != p) {
#ifdef CONFIG_SMP
- if (p->nr_cpus_allowed > 1 && rq->rt.overloaded)
+ bool need_to_push = rq->rt.overloaded ||
+ !rt_task_fits_capacity(p, cpu_of(rq));
+
+ if (p->nr_cpus_allowed > 1 && need_to_push)
rt_queue_push_tasks(rq);
#endif /* CONFIG_SMP */
if (p->prio < rq->curr->prio && cpu_online(cpu_of(rq)))
--
2.17.1
\
 
 \ /
  Last update: 2019-09-03 12:35    [W:0.052 / U:0.348 seconds]
©2003-2020 Jasper Spaans|hosted at Digital Ocean and TransIP|Read the blog|Advertise on this site