lkml.org 
[lkml]   [2019]   [Sep]   [13]   [last100]   RSS Feed
Views: [wrap][no wrap]   [headers]  [forward] 
 
Messages in this thread
/
SubjectRe: [PATCH v5 0/4] Raspberry Pi 4 DMA addressing support
From
Date
Am 13.09.19 um 11:25 schrieb Matthias Brugger:
>
> On 13/09/2019 10:50, Stefan Wahren wrote:
>> Am 13.09.19 um 10:09 schrieb Matthias Brugger:
>>> On 12/09/2019 21:32, Stefan Wahren wrote:
>>>> Am 12.09.19 um 19:18 schrieb Matthias Brugger:
>>>>> On 10/09/2019 11:27, Matthias Brugger wrote:
>>>>>> On 09/09/2019 21:33, Stefan Wahren wrote:
>>>>>>> Hi Nicolas,
>>>>>>>
>>>>>>> Am 09.09.19 um 11:58 schrieb Nicolas Saenz Julienne:
>>>>>>>> Hi all,
>>>>>>>> this series attempts to address some issues we found while bringing up
>>>>>>>> the new Raspberry Pi 4 in arm64 and it's intended to serve as a follow
>>>>>>>> up of these discussions:
>>>>>>>> v4: https://lkml.org/lkml/2019/9/6/352
>>>>>>>> v3: https://lkml.org/lkml/2019/9/2/589
>>>>>>>> v2: https://lkml.org/lkml/2019/8/20/767
>>>>>>>> v1: https://lkml.org/lkml/2019/7/31/922
>>>>>>>> RFC: https://lkml.org/lkml/2019/7/17/476
>>>>>>>>
>>>>>>>> The new Raspberry Pi 4 has up to 4GB of memory but most peripherals can
>>>>>>>> only address the first GB: their DMA address range is
>>>>>>>> 0xc0000000-0xfc000000 which is aliased to the first GB of physical
>>>>>>>> memory 0x00000000-0x3c000000. Note that only some peripherals have these
>>>>>>>> limitations: the PCIe, V3D, GENET, and 40-bit DMA channels have a wider
>>>>>>>> view of the address space by virtue of being hooked up trough a second
>>>>>>>> interconnect.
>>>>>>>>
>>>>>>>> Part of this is solved on arm32 by setting up the machine specific
>>>>>>>> '.dma_zone_size = SZ_1G', which takes care of reserving the coherent
>>>>>>>> memory area at the right spot. That said no buffer bouncing (needed for
>>>>>>>> dma streaming) is available at the moment, but that's a story for
>>>>>>>> another series.
>>>>>>>>
>>>>>>>> Unfortunately there is no such thing as 'dma_zone_size' in arm64. Only
>>>>>>>> ZONE_DMA32 is created which is interpreted by dma-direct and the arm64
>>>>>>>> arch code as if all peripherals where be able to address the first 4GB
>>>>>>>> of memory.
>>>>>>>>
>>>>>>>> In the light of this, the series implements the following changes:
>>>>>>>>
>>>>>>>> - Create both DMA zones in arm64, ZONE_DMA will contain the first 1G
>>>>>>>> area and ZONE_DMA32 the rest of the 32 bit addressable memory. So far
>>>>>>>> the RPi4 is the only arm64 device with such DMA addressing limitations
>>>>>>>> so this hardcoded solution was deemed preferable.
>>>>>>>>
>>>>>>>> - Properly set ARCH_ZONE_DMA_BITS.
>>>>>>>>
>>>>>>>> - Reserve the CMA area in a place suitable for all peripherals.
>>>>>>>>
>>>>>>>> This series has been tested on multiple devices both by checking the
>>>>>>>> zones setup matches the expectations and by double-checking physical
>>>>>>>> addresses on pages allocated on the three relevant areas GFP_DMA,
>>>>>>>> GFP_DMA32, GFP_KERNEL:
>>>>>>>>
>>>>>>>> - On an RPi4 with variations on the ram memory size. But also forcing
>>>>>>>> the situation where all three memory zones are nonempty by setting a 3G
>>>>>>>> ZONE_DMA32 ceiling on a 4G setup. Both with and without NUMA support.
>>>>>>>>
>>>>>>> i like to test this series on Raspberry Pi 4 and i have some questions
>>>>>>> to get arm64 running:
>>>>>>>
>>>>>>> Do you use U-Boot? Which tree?
>>>>>> If you want to use U-Boot, try v2019.10-rc4, it should have everything you need
>>>>>> to boot your kernel.
>>>>>>
>>>>> Ok, here is a thing. In the linux kernel we now use bcm2711 as SoC name, but the
>>>>> RPi4 devicetree provided by the FW uses mostly bcm2838.
>>>> Do you mean the DTB provided at runtime?
>>>>
>>>> You mean the merged U-Boot changes, doesn't work with my Raspberry Pi
>>>> series?
>>>>
>>>>> U-Boot in its default
>>>>> config uses the devicetree provided by the FW, mostly because this way you don't
>>>>> have to do anything to find out how many RAM you really have. Secondly because
>>>>> this will allow us, in the near future, to have one U-boot binary for both RPi3
>>>>> and RPi4 (and as a side effect one binary for RPi1 and RPi2).
>>>>>
>>>>> Anyway, I found at least, that the following compatibles need to be added:
>>>>>
>>>>> "brcm,bcm2838-cprman"
>>>>> "brcm,bcm2838-gpio"
>>>>>
>>>>> Without at least the cprman driver update, you won't see anything.
>>>>>
>>>>> "brcm,bcm2838-rng200" is also a candidate.
>>>>>
>>>>> I also suppose we will need to add "brcm,bcm2838" to
>>>>> arch/arm/mach-bcm/bcm2711.c, but I haven't verified this.
>>>> How about changing this in the downstream kernel? Which is much easier.
>>> I'm not sure I understand what you want to say. My goal is to use the upstream
>>> kernel with the device tree blob provided by the FW.
>> The device tree blob you are talking is defined in this repository:
>>
>> https://github.com/raspberrypi/linux
>>
>> So the word FW is misleading to me.
>>
> No, it's part of
> https://github.com/raspberrypi/firmware.git
> file boot/bcm2711-rpi-4-b.dtb
The compiled DT blobs incl. the kernel image are stored in this artifact
repository. But the sources for the kernel and the DT are in the Linux
repo. This is necessary to be compliant to the GPL.
>
>>> If you talk about the
>>> downstream kernel, I suppose you mean we should change this in the FW DT blob
>>> and in the downstream kernel. That would work for me.
>>>
>>> Did I understand you correctly?
>> Yes
>>
>> So i suggest to add the upstream compatibles into the repo mentioned above.
>>
>> Sorry, but in case you decided as a U-Boot developer to be compatible
>> with a unreviewed DT, we also need to make U-Boot compatible with
>> upstream and downstream DT blobs.
>>
> Well RPi3 is working with the DT blob provided by the FW, as I mentioned earlier
> if we can use this DTB we can work towards one binary that can boot both RPi3
> and RPi4. On the other hand we can rely on the FW to detect the amount of memory
> our RPi4 has.
>
> That said, I agree that we should make sure that U-Boot can boot with both DTBs,
> the upstream one and the downstream. Now the question is how to get to this. I'm
> a bit puzzled that by talking about "unreviewed DT" you insinuate that bcm2711
> compatible is already reviewed and can't be changed. From what I can see none of
> these compatibles got merged for now, so we are still at time to change them.

Stephen Boyd was okay with clk changes except of a small nit. So i fixed
this is as he suggested in a separate series. Unfortunately this hasn't
be applied yet [1].

The i2c, pinctrl and the sdhci changes has been applied yet.

In my opinion it isn't the job of the mainline kernel to adapt to a
vendor device tree. It's the vendor device tree which needs to be fixed.

Sorry, but this is my holiday. I will back after the weekend.

Best regards
Stefan

[1] - https://www.spinics.net/lists/linux-clk/msg40534.html

>
> Apart from the point Florian made, to stay consistent with the RPi SoC naming,
> it will save us work, both in the kernel and in U-Boot, as we would need to add
> both compatibles to the code-base.
>
> Regards,
> Matthias
>
>>>>> Regards,
>>>>> Matthias
>>>>>
>>>>>> Regards,
>>>>>> Matthias
>>>>>>
>>>>>>> Are there any config.txt tweaks necessary?
>>>>>>>
>>>>>>>
>>>>>> _______________________________________________
>>>>>> linux-arm-kernel mailing list
>>>>>> linux-arm-kernel@lists.infradead.org
>>>>>> http://lists.infradead.org/mailman/listinfo/linux-arm-kernel
>>>>>>
>>>>> _______________________________________________
>>>>> linux-arm-kernel mailing list
>>>>> linux-arm-kernel@lists.infradead.org
>>>>> http://lists.infradead.org/mailman/listinfo/linux-arm-kernel

\
 
 \ /
  Last update: 2019-09-13 12:10    [W:0.162 / U:0.636 seconds]
©2003-2020 Jasper Spaans|hosted at Digital Ocean and TransIP|Read the blog|Advertise on this site