lkml.org 
[lkml]   [2019]   [Jan]   [22]   [last100]   RSS Feed
Views: [wrap][no wrap]   [headers]  [forward] 
 
Messages in this thread
/
From
SubjectRE: [PATCH v8 1/5] spi: spi-mem: Add driver for NXP FlexSPI controller
Date
Hello Mark,

Can you please apply below patch in SPI tree?
Patch has been reviewed by Boris and Frieder.

--
Regards
Yogesh Gaur

> -----Original Message-----
> From: Yogesh Narayan Gaur
> Sent: Tuesday, January 15, 2019 5:30 PM
> To: linux-mtd@lists.infradead.org; bbrezillon@kernel.org;
> marek.vasut@gmail.com; broonie@kernel.org; linux-spi@vger.kernel.org;
> devicetree@vger.kernel.org
> Cc: robh@kernel.org; mark.rutland@arm.com; shawnguo@kernel.org; linux-
> arm-kernel@lists.infradead.org; computersforpeace@gmail.com;
> frieder.schrempf@kontron.de; linux-kernel@vger.kernel.org; Yogesh Narayan
> Gaur <yogeshnarayan.gaur@nxp.com>
> Subject: [PATCH v8 1/5] spi: spi-mem: Add driver for NXP FlexSPI controller
>
> - Add driver for NXP FlexSPI host controller
>
> (0) What is the FlexSPI controller?
> FlexSPI is a flexsible SPI host controller which supports two SPI channels and up
> to 4 external devices. Each channel supports Single/Dual/Quad/Octal mode
> data transfer (1/2/4/8 bidirectional data lines) i.e. FlexSPI acts as an interface to
> external devices, maximum 4, each with up to 8 bidirectional data lines.
>
> It uses new SPI memory interface of the SPI framework to issue flash memory
> operations to up to four connected flash devices (2 buses with 2 CS each).
>
> (1) Tested this driver with the mtd_debug and JFFS2 filesystem utility on NXP
> LX2160ARDB and LX2160AQDS targets.
> LX2160ARDB is having two NOR slave device connected on single bus A i.e. A0
> and A1 (CS0 and CS1).
> LX2160AQDS is having two NOR slave device connected on separate buses one
> flash on A0 and second on B1 i.e. (CS0 and CS3).
> Verified this driver on following SPI NOR flashes:
> Micron, mt35xu512ab, [Read - 1 bit mode]
> Cypress, s25fl512s, [Read - 1/2/4 bit mode]
>
> Signed-off-by: Yogesh Narayan Gaur <yogeshnarayan.gaur@nxp.com>
> Reviewed-by: Frieder Schrempf <frieder.schrempf@kontron.de>
> Reviewed-by: Boris Brezillon <bbrezillon@kernel.org>
>
> ---
> Changes for v8:
> - Typo review comments changes
> - Fix logic of read data for case when read size is less than 8 bytes.
> - Add correct email address of Boris
> - Add r-o-b tag of Frieder and Boris
> Changes for v7:
> - Add func pointer for '.get_name' for struct spi_controller_mem_ops
> - Add input address range check as per controller memory mapped space
> - Update _fill_txfifo/_read_rxfifo funcs as per Frieder review comments Changes
> for v6:
> - Rebase on top of v5.0-rc1
> - Updated as per Frieder review comments and perform code cleanup
> - Updated _fill_txfifo/_read_rxfifo func write/read logic Changes for v5:
> - Rebase on top of v4.20-rc2
> - Modified fspi_readl_poll_tout() as per review comments
> - Arrange header file in alphabetical order
> - Removed usage of read()/write() function callback pointer
> - Add support for 1 and 2 byte address length
> - Change Frieder e-mail to new e-mail address Changes for v4:
> - Incorporate Boris review comments
> * Use readl_poll_timeout() instead of busy looping.
> * Re-define register masking as per comment.
> * Drop fspi_devtype enum.
> Changes for v3:
> - Added endianness flag in platform specific structure instead of DTS.
> - Modified nxp_fspi_read_ahb(), removed remapping code.
> - Added Boris and Frieder as Author and provided reference of spi-fsl-qspi.c
> Changes for v2:
> - Incorporated Boris review comments.
> - Remove dependency of driver over connected flash device size.
> - Modified the logic to select requested CS.
> - Remove SPI-Octal Macros.
> drivers/spi/Kconfig | 10 +
> drivers/spi/Makefile | 1 +
> drivers/spi/spi-nxp-fspi.c | 1105 ++++++++++++++++++++++++++++++++++++
> 3 files changed, 1116 insertions(+)
> create mode 100644 drivers/spi/spi-nxp-fspi.c
>
> diff --git a/drivers/spi/Kconfig b/drivers/spi/Kconfig index
> dc67eda1788a..fc4cc7a65c33 100644
> --- a/drivers/spi/Kconfig
> +++ b/drivers/spi/Kconfig
> @@ -279,6 +279,16 @@ config SPI_FSL_QUADSPI
> This controller does not support generic SPI messages. It only
> supports the high-level SPI memory interface.
>
> +config SPI_NXP_FLEXSPI
> + tristate "NXP Flex SPI controller"
> + depends on ARCH_LAYERSCAPE || HAS_IOMEM
> + help
> + This enables support for the Flex SPI controller in master mode.
> + Up to four slave devices can be connected on two buses with two
> + chipselects each.
> + This controller does not support generic SPI messages and only
> + supports the high-level SPI memory interface.
> +
> config SPI_GPIO
> tristate "GPIO-based bitbanging SPI Master"
> depends on GPIOLIB || COMPILE_TEST
> diff --git a/drivers/spi/Makefile b/drivers/spi/Makefile index
> 2a857cb9aa81..5c5af4676279 100644
> --- a/drivers/spi/Makefile
> +++ b/drivers/spi/Makefile
> @@ -64,6 +64,7 @@ obj-$(CONFIG_SPI_MXIC) += spi-mxic.o
> obj-$(CONFIG_SPI_MXS) += spi-mxs.o
> obj-$(CONFIG_SPI_NPCM_PSPI) += spi-npcm-pspi.o
> obj-$(CONFIG_SPI_NUC900) += spi-nuc900.o
> +obj-$(CONFIG_SPI_NXP_FLEXSPI) += spi-nxp-fspi.o
> obj-$(CONFIG_SPI_OC_TINY) += spi-oc-tiny.o
> spi-octeon-objs := spi-cavium.o spi-cavium-octeon.o
> obj-$(CONFIG_SPI_OCTEON) += spi-octeon.o
> diff --git a/drivers/spi/spi-nxp-fspi.c b/drivers/spi/spi-nxp-fspi.c new file mode
> 100644 index 000000000000..b8f19bab3b66
> --- /dev/null
> +++ b/drivers/spi/spi-nxp-fspi.c
> @@ -0,0 +1,1105 @@
> +// SPDX-License-Identifier: GPL-2.0+
> +
> +/*
> + * NXP FlexSPI(FSPI) controller driver.
> + *
> + * Copyright 2019 NXP.
> + *
> + * FlexSPI is a flexsible SPI host controller which supports two SPI
> + * channels and up to 4 external devices. Each channel supports
> + * Single/Dual/Quad/Octal mode data transfer (1/2/4/8 bidirectional
> + * data lines).
> + *
> + * FlexSPI controller is driven by the LUT(Look-up Table) registers
> + * LUT registers are a look-up-table for sequences of instructions.
> + * A valid sequence consists of four LUT registers.
> + * Maximum 32 LUT sequences can be programmed simultaneously.
> + *
> + * LUTs are being created at run-time based on the commands passed
> + * from the spi-mem framework, thus using single LUT index.
> + *
> + * Software triggered Flash read/write access by IP Bus.
> + *
> + * Memory mapped read access by AHB Bus.
> + *
> + * Based on SPI MEM interface and spi-fsl-qspi.c driver.
> + *
> + * Author:
> + * Yogesh Narayan Gaur <yogeshnarayan.gaur@nxp.com>
> + * Boris Brezillion <bbrezillon@kernel.org>
> + * Frieder Schrempf <frieder.schrempf@kontron.de>
> + */
> +
> +#include <linux/bitops.h>
> +#include <linux/clk.h>
> +#include <linux/completion.h>
> +#include <linux/delay.h>
> +#include <linux/err.h>
> +#include <linux/errno.h>
> +#include <linux/interrupt.h>
> +#include <linux/io.h>
> +#include <linux/iopoll.h>
> +#include <linux/jiffies.h>
> +#include <linux/kernel.h>
> +#include <linux/module.h>
> +#include <linux/mutex.h>
> +#include <linux/of.h>
> +#include <linux/of_device.h>
> +#include <linux/platform_device.h>
> +#include <linux/pm_qos.h>
> +#include <linux/sizes.h>
> +
> +#include <linux/spi/spi.h>
> +#include <linux/spi/spi-mem.h>
> +
> +/*
> + * The driver only uses one single LUT entry, that is updated on
> + * each call of exec_op(). Index 0 is preset at boot with a basic
> + * read operation, so let's use the last entry (31).
> + */
> +#define SEQID_LUT 31
> +
> +/* Registers used by the driver */
> +#define FSPI_MCR0 0x00
> +#define FSPI_MCR0_AHB_TIMEOUT(x) ((x) << 24)
> +#define FSPI_MCR0_IP_TIMEOUT(x) ((x) << 16)
> +#define FSPI_MCR0_LEARN_EN BIT(15)
> +#define FSPI_MCR0_SCRFRUN_EN BIT(14)
> +#define FSPI_MCR0_OCTCOMB_EN BIT(13)
> +#define FSPI_MCR0_DOZE_EN BIT(12)
> +#define FSPI_MCR0_HSEN BIT(11)
> +#define FSPI_MCR0_SERCLKDIV BIT(8)
> +#define FSPI_MCR0_ATDF_EN BIT(7)
> +#define FSPI_MCR0_ARDF_EN BIT(6)
> +#define FSPI_MCR0_RXCLKSRC(x) ((x) << 4)
> +#define FSPI_MCR0_END_CFG(x) ((x) << 2)
> +#define FSPI_MCR0_MDIS BIT(1)
> +#define FSPI_MCR0_SWRST BIT(0)
> +
> +#define FSPI_MCR1 0x04
> +#define FSPI_MCR1_SEQ_TIMEOUT(x) ((x) << 16)
> +#define FSPI_MCR1_AHB_TIMEOUT(x) (x)
> +
> +#define FSPI_MCR2 0x08
> +#define FSPI_MCR2_IDLE_WAIT(x) ((x) << 24)
> +#define FSPI_MCR2_SAMEDEVICEEN BIT(15)
> +#define FSPI_MCR2_CLRLRPHS BIT(14)
> +#define FSPI_MCR2_ABRDATSZ BIT(8)
> +#define FSPI_MCR2_ABRLEARN BIT(7)
> +#define FSPI_MCR2_ABR_READ BIT(6)
> +#define FSPI_MCR2_ABRWRITE BIT(5)
> +#define FSPI_MCR2_ABRDUMMY BIT(4)
> +#define FSPI_MCR2_ABR_MODE BIT(3)
> +#define FSPI_MCR2_ABRCADDR BIT(2)
> +#define FSPI_MCR2_ABRRADDR BIT(1)
> +#define FSPI_MCR2_ABR_CMD BIT(0)
> +
> +#define FSPI_AHBCR 0x0c
> +#define FSPI_AHBCR_RDADDROPT BIT(6)
> +#define FSPI_AHBCR_PREF_EN BIT(5)
> +#define FSPI_AHBCR_BUFF_EN BIT(4)
> +#define FSPI_AHBCR_CACH_EN BIT(3)
> +#define FSPI_AHBCR_CLRTXBUF BIT(2)
> +#define FSPI_AHBCR_CLRRXBUF BIT(1)
> +#define FSPI_AHBCR_PAR_EN BIT(0)
> +
> +#define FSPI_INTEN 0x10
> +#define FSPI_INTEN_SCLKSBWR BIT(9)
> +#define FSPI_INTEN_SCLKSBRD BIT(8)
> +#define FSPI_INTEN_DATALRNFL BIT(7)
> +#define FSPI_INTEN_IPTXWE BIT(6)
> +#define FSPI_INTEN_IPRXWA BIT(5)
> +#define FSPI_INTEN_AHBCMDERR BIT(4)
> +#define FSPI_INTEN_IPCMDERR BIT(3)
> +#define FSPI_INTEN_AHBCMDGE BIT(2)
> +#define FSPI_INTEN_IPCMDGE BIT(1)
> +#define FSPI_INTEN_IPCMDDONE BIT(0)
> +
> +#define FSPI_INTR 0x14
> +#define FSPI_INTR_SCLKSBWR BIT(9)
> +#define FSPI_INTR_SCLKSBRD BIT(8)
> +#define FSPI_INTR_DATALRNFL BIT(7)
> +#define FSPI_INTR_IPTXWE BIT(6)
> +#define FSPI_INTR_IPRXWA BIT(5)
> +#define FSPI_INTR_AHBCMDERR BIT(4)
> +#define FSPI_INTR_IPCMDERR BIT(3)
> +#define FSPI_INTR_AHBCMDGE BIT(2)
> +#define FSPI_INTR_IPCMDGE BIT(1)
> +#define FSPI_INTR_IPCMDDONE BIT(0)
> +
> +#define FSPI_LUTKEY 0x18
> +#define FSPI_LUTKEY_VALUE 0x5AF05AF0
> +
> +#define FSPI_LCKCR 0x1C
> +
> +#define FSPI_LCKER_LOCK 0x1
> +#define FSPI_LCKER_UNLOCK 0x2
> +
> +#define FSPI_BUFXCR_INVALID_MSTRID 0xE
> +#define FSPI_AHBRX_BUF0CR0 0x20
> +#define FSPI_AHBRX_BUF1CR0 0x24
> +#define FSPI_AHBRX_BUF2CR0 0x28
> +#define FSPI_AHBRX_BUF3CR0 0x2C
> +#define FSPI_AHBRX_BUF4CR0 0x30
> +#define FSPI_AHBRX_BUF5CR0 0x34
> +#define FSPI_AHBRX_BUF6CR0 0x38
> +#define FSPI_AHBRX_BUF7CR0 0x3C
> +#define FSPI_AHBRXBUF0CR7_PREF BIT(31)
> +
> +#define FSPI_AHBRX_BUF0CR1 0x40
> +#define FSPI_AHBRX_BUF1CR1 0x44
> +#define FSPI_AHBRX_BUF2CR1 0x48
> +#define FSPI_AHBRX_BUF3CR1 0x4C
> +#define FSPI_AHBRX_BUF4CR1 0x50
> +#define FSPI_AHBRX_BUF5CR1 0x54
> +#define FSPI_AHBRX_BUF6CR1 0x58
> +#define FSPI_AHBRX_BUF7CR1 0x5C
> +
> +#define FSPI_FLSHA1CR0 0x60
> +#define FSPI_FLSHA2CR0 0x64
> +#define FSPI_FLSHB1CR0 0x68
> +#define FSPI_FLSHB2CR0 0x6C
> +#define FSPI_FLSHXCR0_SZ_KB 10
> +#define FSPI_FLSHXCR0_SZ(x) ((x) >> FSPI_FLSHXCR0_SZ_KB)
> +
> +#define FSPI_FLSHA1CR1 0x70
> +#define FSPI_FLSHA2CR1 0x74
> +#define FSPI_FLSHB1CR1 0x78
> +#define FSPI_FLSHB2CR1 0x7C
> +#define FSPI_FLSHXCR1_CSINTR(x) ((x) << 16)
> +#define FSPI_FLSHXCR1_CAS(x) ((x) << 11)
> +#define FSPI_FLSHXCR1_WA BIT(10)
> +#define FSPI_FLSHXCR1_TCSH(x) ((x) << 5)
> +#define FSPI_FLSHXCR1_TCSS(x) (x)
> +
> +#define FSPI_FLSHA1CR2 0x80
> +#define FSPI_FLSHA2CR2 0x84
> +#define FSPI_FLSHB1CR2 0x88
> +#define FSPI_FLSHB2CR2 0x8C
> +#define FSPI_FLSHXCR2_CLRINSP BIT(24)
> +#define FSPI_FLSHXCR2_AWRWAIT BIT(16)
> +#define FSPI_FLSHXCR2_AWRSEQN_SHIFT 13
> +#define FSPI_FLSHXCR2_AWRSEQI_SHIFT 8
> +#define FSPI_FLSHXCR2_ARDSEQN_SHIFT 5
> +#define FSPI_FLSHXCR2_ARDSEQI_SHIFT 0
> +
> +#define FSPI_IPCR0 0xA0
> +
> +#define FSPI_IPCR1 0xA4
> +#define FSPI_IPCR1_IPAREN BIT(31)
> +#define FSPI_IPCR1_SEQNUM_SHIFT 24
> +#define FSPI_IPCR1_SEQID_SHIFT 16
> +#define FSPI_IPCR1_IDATSZ(x) (x)
> +
> +#define FSPI_IPCMD 0xB0
> +#define FSPI_IPCMD_TRG BIT(0)
> +
> +#define FSPI_DLPR 0xB4
> +
> +#define FSPI_IPRXFCR 0xB8
> +#define FSPI_IPRXFCR_CLR BIT(0)
> +#define FSPI_IPRXFCR_DMA_EN BIT(1)
> +#define FSPI_IPRXFCR_WMRK(x) ((x) << 2)
> +
> +#define FSPI_IPTXFCR 0xBC
> +#define FSPI_IPTXFCR_CLR BIT(0)
> +#define FSPI_IPTXFCR_DMA_EN BIT(1)
> +#define FSPI_IPTXFCR_WMRK(x) ((x) << 2)
> +
> +#define FSPI_DLLACR 0xC0
> +#define FSPI_DLLACR_OVRDEN BIT(8)
> +
> +#define FSPI_DLLBCR 0xC4
> +#define FSPI_DLLBCR_OVRDEN BIT(8)
> +
> +#define FSPI_STS0 0xE0
> +#define FSPI_STS0_DLPHB(x) ((x) << 8)
> +#define FSPI_STS0_DLPHA(x) ((x) << 4)
> +#define FSPI_STS0_CMD_SRC(x) ((x) << 2)
> +#define FSPI_STS0_ARB_IDLE BIT(1)
> +#define FSPI_STS0_SEQ_IDLE BIT(0)
> +
> +#define FSPI_STS1 0xE4
> +#define FSPI_STS1_IP_ERRCD(x) ((x) << 24)
> +#define FSPI_STS1_IP_ERRID(x) ((x) << 16)
> +#define FSPI_STS1_AHB_ERRCD(x) ((x) << 8)
> +#define FSPI_STS1_AHB_ERRID(x) (x)
> +
> +#define FSPI_AHBSPNST 0xEC
> +#define FSPI_AHBSPNST_DATLFT(x) ((x) << 16)
> +#define FSPI_AHBSPNST_BUFID(x) ((x) << 1)
> +#define FSPI_AHBSPNST_ACTIVE BIT(0)
> +
> +#define FSPI_IPRXFSTS 0xF0
> +#define FSPI_IPRXFSTS_RDCNTR(x) ((x) << 16)
> +#define FSPI_IPRXFSTS_FILL(x) (x)
> +
> +#define FSPI_IPTXFSTS 0xF4
> +#define FSPI_IPTXFSTS_WRCNTR(x) ((x) << 16)
> +#define FSPI_IPTXFSTS_FILL(x) (x)
> +
> +#define FSPI_RFDR 0x100
> +#define FSPI_TFDR 0x180
> +
> +#define FSPI_LUT_BASE 0x200
> +#define FSPI_LUT_OFFSET (SEQID_LUT * 4 * 4)
> +#define FSPI_LUT_REG(idx) \
> + (FSPI_LUT_BASE + FSPI_LUT_OFFSET + (idx) * 4)
> +
> +/* register map end */
> +
> +/* Instruction set for the LUT register. */
> +#define LUT_STOP 0x00
> +#define LUT_CMD 0x01
> +#define LUT_ADDR 0x02
> +#define LUT_CADDR_SDR 0x03
> +#define LUT_MODE 0x04
> +#define LUT_MODE2 0x05
> +#define LUT_MODE4 0x06
> +#define LUT_MODE8 0x07
> +#define LUT_NXP_WRITE 0x08
> +#define LUT_NXP_READ 0x09
> +#define LUT_LEARN_SDR 0x0A
> +#define LUT_DATSZ_SDR 0x0B
> +#define LUT_DUMMY 0x0C
> +#define LUT_DUMMY_RWDS_SDR 0x0D
> +#define LUT_JMP_ON_CS 0x1F
> +#define LUT_CMD_DDR 0x21
> +#define LUT_ADDR_DDR 0x22
> +#define LUT_CADDR_DDR 0x23
> +#define LUT_MODE_DDR 0x24
> +#define LUT_MODE2_DDR 0x25
> +#define LUT_MODE4_DDR 0x26
> +#define LUT_MODE8_DDR 0x27
> +#define LUT_WRITE_DDR 0x28
> +#define LUT_READ_DDR 0x29
> +#define LUT_LEARN_DDR 0x2A
> +#define LUT_DATSZ_DDR 0x2B
> +#define LUT_DUMMY_DDR 0x2C
> +#define LUT_DUMMY_RWDS_DDR 0x2D
> +
> +/*
> + * Calculate number of required PAD bits for LUT register.
> + *
> + * The pad stands for the number of IO lines [0:7].
> + * For example, the octal read needs eight IO lines,
> + * so you should use LUT_PAD(8). This macro
> + * returns 3 i.e. use eight (2^3) IP lines for read.
> + */
> +#define LUT_PAD(x) (fls(x) - 1)
> +
> +/*
> + * Macro for constructing the LUT entries with the following
> + * register layout:
> + *
> + * ---------------------------------------------------
> + * | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 |
> + * ---------------------------------------------------
> + */
> +#define PAD_SHIFT 8
> +#define INSTR_SHIFT 10
> +#define OPRND_SHIFT 16
> +
> +/* Macros for constructing the LUT register. */
> +#define LUT_DEF(idx, ins, pad, opr) \
> + ((((ins) << INSTR_SHIFT) | ((pad) << PAD_SHIFT) | \
> + (opr)) << (((idx) % 2) * OPRND_SHIFT))
> +
> +#define POLL_TOUT 5000
> +#define NXP_FSPI_MAX_CHIPSELECT 4
> +
> +struct nxp_fspi_devtype_data {
> + unsigned int rxfifo;
> + unsigned int txfifo;
> + unsigned int ahb_buf_size;
> + unsigned int quirks;
> + bool little_endian;
> +};
> +
> +static const struct nxp_fspi_devtype_data lx2160a_data = {
> + .rxfifo = SZ_512, /* (64 * 64 bits) */
> + .txfifo = SZ_1K, /* (128 * 64 bits) */
> + .ahb_buf_size = SZ_2K, /* (256 * 64 bits) */
> + .quirks = 0,
> + .little_endian = true, /* little-endian */
> +};
> +
> +struct nxp_fspi {
> + void __iomem *iobase;
> + void __iomem *ahb_addr;
> + u32 memmap_phy;
> + u32 memmap_phy_size;
> + struct clk *clk, *clk_en;
> + struct device *dev;
> + struct completion c;
> + const struct nxp_fspi_devtype_data *devtype_data;
> + struct mutex lock;
> + struct pm_qos_request pm_qos_req;
> + int selected;
> +};
> +
> +/*
> + * R/W functions for big- or little-endian registers:
> + * The FSPI controller's endianness is independent of
> + * the CPU core's endianness. So far, although the CPU
> + * core is little-endian the FSPI controller can use
> + * big-endian or little-endian.
> + */
> +static void fspi_writel(struct nxp_fspi *f, u32 val, void __iomem
> +*addr) {
> + if (f->devtype_data->little_endian)
> + iowrite32(val, addr);
> + else
> + iowrite32be(val, addr);
> +}
> +
> +static u32 fspi_readl(struct nxp_fspi *f, void __iomem *addr) {
> + if (f->devtype_data->little_endian)
> + return ioread32(addr);
> + else
> + return ioread32be(addr);
> +}
> +
> +static irqreturn_t nxp_fspi_irq_handler(int irq, void *dev_id) {
> + struct nxp_fspi *f = dev_id;
> + u32 reg;
> +
> + /* clear interrupt */
> + reg = fspi_readl(f, f->iobase + FSPI_INTR);
> + fspi_writel(f, FSPI_INTR_IPCMDDONE, f->iobase + FSPI_INTR);
> +
> + if (reg & FSPI_INTR_IPCMDDONE)
> + complete(&f->c);
> +
> + return IRQ_HANDLED;
> +}
> +
> +static int nxp_fspi_check_buswidth(struct nxp_fspi *f, u8 width) {
> + switch (width) {
> + case 1:
> + case 2:
> + case 4:
> + case 8:
> + return 0;
> + }
> +
> + return -ENOTSUPP;
> +}
> +
> +static bool nxp_fspi_supports_op(struct spi_mem *mem,
> + const struct spi_mem_op *op)
> +{
> + struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master);
> + int ret;
> +
> + ret = nxp_fspi_check_buswidth(f, op->cmd.buswidth);
> +
> + if (op->addr.nbytes)
> + ret |= nxp_fspi_check_buswidth(f, op->addr.buswidth);
> +
> + if (op->dummy.nbytes)
> + ret |= nxp_fspi_check_buswidth(f, op->dummy.buswidth);
> +
> + if (op->data.nbytes)
> + ret |= nxp_fspi_check_buswidth(f, op->data.buswidth);
> +
> + if (ret)
> + return false;
> +
> + /*
> + * The number of address bytes should be equal to or less than 4 bytes.
> + */
> + if (op->addr.nbytes > 4)
> + return false;
> +
> + /*
> + * If requested address value is greater than controller assigned
> + * memory mapped space, return error as it didn't fit in the range
> + * of assigned address space.
> + */
> + if (op->addr.val >= f->memmap_phy_size)
> + return false;
> +
> + /* Max 64 dummy clock cycles supported */
> + if (op->dummy.buswidth &&
> + (op->dummy.nbytes * 8 / op->dummy.buswidth > 64))
> + return false;
> +
> + /* Max data length, check controller limits and alignment */
> + if (op->data.dir == SPI_MEM_DATA_IN &&
> + (op->data.nbytes > f->devtype_data->ahb_buf_size ||
> + (op->data.nbytes > f->devtype_data->rxfifo - 4 &&
> + !IS_ALIGNED(op->data.nbytes, 8))))
> + return false;
> +
> + if (op->data.dir == SPI_MEM_DATA_OUT &&
> + op->data.nbytes > f->devtype_data->txfifo)
> + return false;
> +
> + return true;
> +}
> +
> +/* Instead of busy looping invoke readl_poll_timeout functionality. */
> +static int fspi_readl_poll_tout(struct nxp_fspi *f, void __iomem *base,
> + u32 mask, u32 delay_us,
> + u32 timeout_us, bool c)
> +{
> + u32 reg;
> +
> + if (!f->devtype_data->little_endian)
> + mask = (u32)cpu_to_be32(mask);
> +
> + if (c)
> + return readl_poll_timeout(base, reg, (reg & mask),
> + delay_us, timeout_us);
> + else
> + return readl_poll_timeout(base, reg, !(reg & mask),
> + delay_us, timeout_us);
> +}
> +
> +/*
> + * If the slave device content being changed by Write/Erase, need to
> + * invalidate the AHB buffer. This can be achieved by doing the reset
> + * of controller after setting MCR0[SWRESET] bit.
> + */
> +static inline void nxp_fspi_invalid(struct nxp_fspi *f) {
> + u32 reg;
> + int ret;
> +
> + reg = fspi_readl(f, f->iobase + FSPI_MCR0);
> + fspi_writel(f, reg | FSPI_MCR0_SWRST, f->iobase + FSPI_MCR0);
> +
> + /* w1c register, wait unit clear */
> + ret = fspi_readl_poll_tout(f, f->iobase + FSPI_MCR0,
> + FSPI_MCR0_SWRST, 0, POLL_TOUT, false);
> + WARN_ON(ret);
> +}
> +
> +static void nxp_fspi_prepare_lut(struct nxp_fspi *f,
> + const struct spi_mem_op *op)
> +{
> + void __iomem *base = f->iobase;
> + u32 lutval[4] = {};
> + int lutidx = 1, i;
> +
> + /* cmd */
> + lutval[0] |= LUT_DEF(0, LUT_CMD, LUT_PAD(op->cmd.buswidth),
> + op->cmd.opcode);
> +
> + /* addr bytes */
> + if (op->addr.nbytes) {
> + lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_ADDR,
> + LUT_PAD(op->addr.buswidth),
> + op->addr.nbytes * 8);
> + lutidx++;
> + }
> +
> + /* dummy bytes, if needed */
> + if (op->dummy.nbytes) {
> + lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_DUMMY,
> + /*
> + * Due to FlexSPI controller limitation number of PAD for
> dummy
> + * buswidth needs to be programmed as equal to data buswidth.
> + */
> + LUT_PAD(op->data.buswidth),
> + op->dummy.nbytes * 8 /
> + op->dummy.buswidth);
> + lutidx++;
> + }
> +
> + /* read/write data bytes */
> + if (op->data.nbytes) {
> + lutval[lutidx / 2] |= LUT_DEF(lutidx,
> + op->data.dir ==
> SPI_MEM_DATA_IN ?
> + LUT_NXP_READ : LUT_NXP_WRITE,
> + LUT_PAD(op->data.buswidth),
> + 0);
> + lutidx++;
> + }
> +
> + /* stop condition. */
> + lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_STOP, 0, 0);
> +
> + /* unlock LUT */
> + fspi_writel(f, FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY);
> + fspi_writel(f, FSPI_LCKER_UNLOCK, f->iobase + FSPI_LCKCR);
> +
> + /* fill LUT */
> + for (i = 0; i < ARRAY_SIZE(lutval); i++)
> + fspi_writel(f, lutval[i], base + FSPI_LUT_REG(i));
> +
> + dev_dbg(f->dev, "CMD[%x] lutval[0:%x \t 1:%x \t 2:%x \t 3:%x]\n",
> + op->cmd.opcode, lutval[0], lutval[1], lutval[2], lutval[3]);
> +
> + /* lock LUT */
> + fspi_writel(f, FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY);
> + fspi_writel(f, FSPI_LCKER_LOCK, f->iobase + FSPI_LCKCR); }
> +
> +static int nxp_fspi_clk_prep_enable(struct nxp_fspi *f) {
> + int ret;
> +
> + ret = clk_prepare_enable(f->clk_en);
> + if (ret)
> + return ret;
> +
> + ret = clk_prepare_enable(f->clk);
> + if (ret) {
> + clk_disable_unprepare(f->clk_en);
> + return ret;
> + }
> +
> + return 0;
> +}
> +
> +static void nxp_fspi_clk_disable_unprep(struct nxp_fspi *f) {
> + clk_disable_unprepare(f->clk);
> + clk_disable_unprepare(f->clk_en);
> +}
> +
> +/*
> + * In FlexSPI controller, flash access is based on value of
> +FSPI_FLSHXXCR0
> + * register and start base address of the slave device.
> + *
> + * (Higher address)
> + * -------- <-- FLSHB2CR0
> + * | B2 |
> + * | |
> + * B2 start address --> -------- <-- FLSHB1CR0
> + * | B1 |
> + * | |
> + * B1 start address --> -------- <-- FLSHA2CR0
> + * | A2 |
> + * | |
> + * A2 start address --> -------- <-- FLSHA1CR0
> + * | A1 |
> + * | |
> + * A1 start address --> -------- (Lower address)
> + *
> + *
> + * Start base address defines the starting address range for given CS
> +and
> + * FSPI_FLSHXXCR0 defines the size of the slave device connected at given CS.
> + *
> + * But, different targets are having different combinations of number
> +of CS,
> + * some targets only have single CS or two CS covering controller's
> +full
> + * memory mapped space area.
> + * Thus, implementation is being done as independent of the size and
> +number
> + * of the connected slave device.
> + * Assign controller memory mapped space size as the size to the
> +connected
> + * slave device.
> + * Mark FLSHxxCR0 as zero initially and then assign value only to the
> +selected
> + * chip-select Flash configuration register.
> + *
> + * For e.g. to access CS2 (B1), FLSHB1CR0 register would be equal to
> +the
> + * memory mapped size of the controller.
> + * Value for rest of the CS FLSHxxCR0 register would be zero.
> + *
> + */
> +static void nxp_fspi_select_mem(struct nxp_fspi *f, struct spi_device
> +*spi) {
> + unsigned long rate = spi->max_speed_hz;
> + int ret;
> + uint64_t size_kb;
> +
> + /*
> + * Return, if previously selected slave device is same as current
> + * requested slave device.
> + */
> + if (f->selected == spi->chip_select)
> + return;
> +
> + /* Reset FLSHxxCR0 registers */
> + fspi_writel(f, 0, f->iobase + FSPI_FLSHA1CR0);
> + fspi_writel(f, 0, f->iobase + FSPI_FLSHA2CR0);
> + fspi_writel(f, 0, f->iobase + FSPI_FLSHB1CR0);
> + fspi_writel(f, 0, f->iobase + FSPI_FLSHB2CR0);
> +
> + /* Assign controller memory mapped space as size, KBytes, of flash. */
> + size_kb = FSPI_FLSHXCR0_SZ(f->memmap_phy_size);
> +
> + fspi_writel(f, size_kb, f->iobase + FSPI_FLSHA1CR0 +
> + 4 * spi->chip_select);
> +
> + dev_dbg(f->dev, "Slave device [CS:%x] selected\n", spi->chip_select);
> +
> + nxp_fspi_clk_disable_unprep(f);
> +
> + ret = clk_set_rate(f->clk, rate);
> + if (ret)
> + return;
> +
> + ret = nxp_fspi_clk_prep_enable(f);
> + if (ret)
> + return;
> +
> + f->selected = spi->chip_select;
> +}
> +
> +static void nxp_fspi_read_ahb(struct nxp_fspi *f, const struct
> +spi_mem_op *op) {
> + u32 len = op->data.nbytes;
> +
> + /* Read out the data directly from the AHB buffer. */
> + memcpy_fromio(op->data.buf.in, (f->ahb_addr + op->addr.val), len); }
> +
> +static void nxp_fspi_fill_txfifo(struct nxp_fspi *f,
> + const struct spi_mem_op *op)
> +{
> + void __iomem *base = f->iobase;
> + int i, ret;
> + u8 *buf = (u8 *) op->data.buf.out;
> +
> + /* clear the TX FIFO. */
> + fspi_writel(f, FSPI_IPTXFCR_CLR, base + FSPI_IPTXFCR);
> +
> + /*
> + * Default value of water mark level is 8 bytes, hence in single
> + * write request controller can write max 8 bytes of data.
> + */
> +
> + for (i = 0; i < ALIGN_DOWN(op->data.nbytes, 8); i += 8) {
> + /* Wait for TXFIFO empty */
> + ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
> + FSPI_INTR_IPTXWE, 0,
> + POLL_TOUT, true);
> + WARN_ON(ret);
> +
> + fspi_writel(f, *(u32 *) (buf + i), base + FSPI_TFDR);
> + fspi_writel(f, *(u32 *) (buf + i + 4), base + FSPI_TFDR + 4);
> + fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR);
> + }
> +
> + if (i < op->data.nbytes) {
> + u32 data = 0;
> + int j;
> + /* Wait for TXFIFO empty */
> + ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
> + FSPI_INTR_IPTXWE, 0,
> + POLL_TOUT, true);
> + WARN_ON(ret);
> +
> + for (j = 0; j < ALIGN(op->data.nbytes - i, 4); j += 4) {
> + memcpy(&data, buf + i + j, 4);
> + fspi_writel(f, data, base + FSPI_TFDR + j);
> + }
> + fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR);
> + }
> +}
> +
> +static void nxp_fspi_read_rxfifo(struct nxp_fspi *f,
> + const struct spi_mem_op *op)
> +{
> + void __iomem *base = f->iobase;
> + int i, ret;
> + int len = op->data.nbytes;
> + u8 *buf = (u8 *) op->data.buf.in;
> +
> + /*
> + * Default value of water mark level is 8 bytes, hence in single
> + * read request controller can read max 8 bytes of data.
> + */
> + for (i = 0; i < ALIGN_DOWN(len, 8); i += 8) {
> + /* Wait for RXFIFO available */
> + ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
> + FSPI_INTR_IPRXWA, 0,
> + POLL_TOUT, true);
> + WARN_ON(ret);
> +
> + *(u32 *)(buf + i) = fspi_readl(f, base + FSPI_RFDR);
> + *(u32 *)(buf + i + 4) = fspi_readl(f, base + FSPI_RFDR + 4);
> + /* move the FIFO pointer */
> + fspi_writel(f, FSPI_INTR_IPRXWA, base + FSPI_INTR);
> + }
> +
> + if (i < len) {
> + u32 tmp;
> + int size, j;
> +
> + buf = op->data.buf.in + i;
> + /* Wait for RXFIFO available */
> + ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
> + FSPI_INTR_IPRXWA, 0,
> + POLL_TOUT, true);
> + WARN_ON(ret);
> +
> + len = op->data.nbytes - i;
> + for (j = 0; j < op->data.nbytes - i; j += 4) {
> + tmp = fspi_readl(f, base + FSPI_RFDR + j);
> + size = min(len, 4);
> + memcpy(buf + j, &tmp, size);
> + len -= size;
> + }
> + }
> +
> + /* invalid the RXFIFO */
> + fspi_writel(f, FSPI_IPRXFCR_CLR, base + FSPI_IPRXFCR);
> + /* move the FIFO pointer */
> + fspi_writel(f, FSPI_INTR_IPRXWA, base + FSPI_INTR); }
> +
> +static int nxp_fspi_do_op(struct nxp_fspi *f, const struct spi_mem_op
> +*op) {
> + void __iomem *base = f->iobase;
> + int seqnum = 0;
> + int err = 0;
> + u32 reg;
> +
> + reg = fspi_readl(f, base + FSPI_IPRXFCR);
> + /* invalid RXFIFO first */
> + reg &= ~FSPI_IPRXFCR_DMA_EN;
> + reg = reg | FSPI_IPRXFCR_CLR;
> + fspi_writel(f, reg, base + FSPI_IPRXFCR);
> +
> + init_completion(&f->c);
> +
> + fspi_writel(f, op->addr.val, base + FSPI_IPCR0);
> + /*
> + * Always start the sequence at the same index since we update
> + * the LUT at each exec_op() call. And also specify the DATA
> + * length, since it's has not been specified in the LUT.
> + */
> + fspi_writel(f, op->data.nbytes |
> + (SEQID_LUT << FSPI_IPCR1_SEQID_SHIFT) |
> + (seqnum << FSPI_IPCR1_SEQNUM_SHIFT),
> + base + FSPI_IPCR1);
> +
> + /* Trigger the LUT now. */
> + fspi_writel(f, FSPI_IPCMD_TRG, base + FSPI_IPCMD);
> +
> + /* Wait for the interrupt. */
> + if (!wait_for_completion_timeout(&f->c, msecs_to_jiffies(1000)))
> + err = -ETIMEDOUT;
> +
> + /* Invoke IP data read, if request is of data read. */
> + if (!err && op->data.nbytes && op->data.dir == SPI_MEM_DATA_IN)
> + nxp_fspi_read_rxfifo(f, op);
> +
> + return err;
> +}
> +
> +static int nxp_fspi_exec_op(struct spi_mem *mem, const struct
> +spi_mem_op *op) {
> + struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master);
> + int err = 0;
> +
> + mutex_lock(&f->lock);
> +
> + /* Wait for controller being ready. */
> + err = fspi_readl_poll_tout(f, f->iobase + FSPI_STS0,
> + FSPI_STS0_ARB_IDLE, 1, POLL_TOUT, true);
> + WARN_ON(err);
> +
> + nxp_fspi_select_mem(f, mem->spi);
> +
> + nxp_fspi_prepare_lut(f, op);
> + /*
> + * If we have large chunks of data, we read them through the AHB bus
> + * by accessing the mapped memory. In all other cases we use
> + * IP commands to access the flash.
> + */
> + if (op->data.nbytes > (f->devtype_data->rxfifo - 4) &&
> + op->data.dir == SPI_MEM_DATA_IN) {
> + nxp_fspi_read_ahb(f, op);
> + } else {
> + if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_OUT)
> + nxp_fspi_fill_txfifo(f, op);
> +
> + err = nxp_fspi_do_op(f, op);
> + }
> +
> + /* Invalidate the data in the AHB buffer. */
> + nxp_fspi_invalid(f);
> +
> + mutex_unlock(&f->lock);
> +
> + return err;
> +}
> +
> +static int nxp_fspi_adjust_op_size(struct spi_mem *mem, struct
> +spi_mem_op *op) {
> + struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master);
> +
> + if (op->data.dir == SPI_MEM_DATA_OUT) {
> + if (op->data.nbytes > f->devtype_data->txfifo)
> + op->data.nbytes = f->devtype_data->txfifo;
> + } else {
> + if (op->data.nbytes > f->devtype_data->ahb_buf_size)
> + op->data.nbytes = f->devtype_data->ahb_buf_size;
> + else if (op->data.nbytes > (f->devtype_data->rxfifo - 4))
> + op->data.nbytes = ALIGN_DOWN(op->data.nbytes, 8);
> + }
> +
> + return 0;
> +}
> +
> +static int nxp_fspi_default_setup(struct nxp_fspi *f) {
> + void __iomem *base = f->iobase;
> + int ret, i;
> + u32 reg;
> +
> + /* disable and unprepare clock to avoid glitch pass to controller */
> + nxp_fspi_clk_disable_unprep(f);
> +
> + /* the default frequency, we will change it later if necessary. */
> + ret = clk_set_rate(f->clk, 20000000);
> + if (ret)
> + return ret;
> +
> + ret = nxp_fspi_clk_prep_enable(f);
> + if (ret)
> + return ret;
> +
> + /* Reset the module */
> + /* w1c register, wait unit clear */
> + ret = fspi_readl_poll_tout(f, f->iobase + FSPI_MCR0,
> + FSPI_MCR0_SWRST, 0, POLL_TOUT, false);
> + WARN_ON(ret);
> +
> + /* Disable the module */
> + fspi_writel(f, FSPI_MCR0_MDIS, base + FSPI_MCR0);
> +
> + /* Reset the DLL register to default value */
> + fspi_writel(f, FSPI_DLLACR_OVRDEN, base + FSPI_DLLACR);
> + fspi_writel(f, FSPI_DLLBCR_OVRDEN, base + FSPI_DLLBCR);
> +
> + /* enable module */
> + fspi_writel(f, FSPI_MCR0_AHB_TIMEOUT(0xFF) |
> FSPI_MCR0_IP_TIMEOUT(0xFF),
> + base + FSPI_MCR0);
> +
> + /*
> + * Disable same device enable bit and configure all slave devices
> + * independently.
> + */
> + reg = fspi_readl(f, f->iobase + FSPI_MCR2);
> + reg = reg & ~(FSPI_MCR2_SAMEDEVICEEN);
> + fspi_writel(f, reg, base + FSPI_MCR2);
> +
> + /* AHB configuration for access buffer 0~7. */
> + for (i = 0; i < 7; i++)
> + fspi_writel(f, 0, base + FSPI_AHBRX_BUF0CR0 + 4 * i);
> +
> + /*
> + * Set ADATSZ with the maximum AHB buffer size to improve the read
> + * performance.
> + */
> + fspi_writel(f, (f->devtype_data->ahb_buf_size / 8 |
> + FSPI_AHBRXBUF0CR7_PREF), base + FSPI_AHBRX_BUF7CR0);
> +
> + /* prefetch and no start address alignment limitation */
> + fspi_writel(f, FSPI_AHBCR_PREF_EN | FSPI_AHBCR_RDADDROPT,
> + base + FSPI_AHBCR);
> +
> + /* AHB Read - Set lut sequence ID for all CS. */
> + fspi_writel(f, SEQID_LUT, base + FSPI_FLSHA1CR2);
> + fspi_writel(f, SEQID_LUT, base + FSPI_FLSHA2CR2);
> + fspi_writel(f, SEQID_LUT, base + FSPI_FLSHB1CR2);
> + fspi_writel(f, SEQID_LUT, base + FSPI_FLSHB2CR2);
> +
> + f->selected = -1;
> +
> + /* enable the interrupt */
> + fspi_writel(f, FSPI_INTEN_IPCMDDONE, base + FSPI_INTEN);
> +
> + return 0;
> +}
> +
> +static const char *nxp_fspi_get_name(struct spi_mem *mem) {
> + struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master);
> + struct device *dev = &mem->spi->dev;
> + const char *name;
> +
> + // Set custom name derived from the platform_device of the controller.
> + if (of_get_available_child_count(f->dev->of_node) == 1)
> + return dev_name(f->dev);
> +
> + name = devm_kasprintf(dev, GFP_KERNEL,
> + "%s-%d", dev_name(f->dev),
> + mem->spi->chip_select);
> +
> + if (!name) {
> + dev_err(dev, "failed to get memory for custom flash name\n");
> + return ERR_PTR(-ENOMEM);
> + }
> +
> + return name;
> +}
> +
> +static const struct spi_controller_mem_ops nxp_fspi_mem_ops = {
> + .adjust_op_size = nxp_fspi_adjust_op_size,
> + .supports_op = nxp_fspi_supports_op,
> + .exec_op = nxp_fspi_exec_op,
> + .get_name = nxp_fspi_get_name,
> +};
> +
> +static int nxp_fspi_probe(struct platform_device *pdev) {
> + struct spi_controller *ctlr;
> + struct device *dev = &pdev->dev;
> + struct device_node *np = dev->of_node;
> + struct resource *res;
> + struct nxp_fspi *f;
> + int ret;
> +
> + ctlr = spi_alloc_master(&pdev->dev, sizeof(*f));
> + if (!ctlr)
> + return -ENOMEM;
> +
> + ctlr->mode_bits = SPI_RX_DUAL | SPI_RX_QUAD |
> + SPI_TX_DUAL | SPI_TX_QUAD;
> +
> + f = spi_controller_get_devdata(ctlr);
> + f->dev = dev;
> + f->devtype_data = of_device_get_match_data(dev);
> + if (!f->devtype_data) {
> + ret = -ENODEV;
> + goto err_put_ctrl;
> + }
> +
> + platform_set_drvdata(pdev, f);
> +
> + /* find the resources - configuration register address space */
> + res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
> "fspi_base");
> + f->iobase = devm_ioremap_resource(dev, res);
> + if (IS_ERR(f->iobase)) {
> + ret = PTR_ERR(f->iobase);
> + goto err_put_ctrl;
> + }
> +
> + /* find the resources - controller memory mapped space */
> + res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
> "fspi_mmap");
> + f->ahb_addr = devm_ioremap_resource(dev, res);
> + if (IS_ERR(f->ahb_addr)) {
> + ret = PTR_ERR(f->ahb_addr);
> + goto err_put_ctrl;
> + }
> +
> + /* assign memory mapped starting address and mapped size. */
> + f->memmap_phy = res->start;
> + f->memmap_phy_size = resource_size(res);
> +
> + /* find the clocks */
> + f->clk_en = devm_clk_get(dev, "fspi_en");
> + if (IS_ERR(f->clk_en)) {
> + ret = PTR_ERR(f->clk_en);
> + goto err_put_ctrl;
> + }
> +
> + f->clk = devm_clk_get(dev, "fspi");
> + if (IS_ERR(f->clk)) {
> + ret = PTR_ERR(f->clk);
> + goto err_put_ctrl;
> + }
> +
> + ret = nxp_fspi_clk_prep_enable(f);
> + if (ret) {
> + dev_err(dev, "can not enable the clock\n");
> + goto err_put_ctrl;
> + }
> +
> + /* find the irq */
> + ret = platform_get_irq(pdev, 0);
> + if (ret < 0) {
> + dev_err(dev, "failed to get the irq: %d\n", ret);
> + goto err_disable_clk;
> + }
> +
> + ret = devm_request_irq(dev, ret,
> + nxp_fspi_irq_handler, 0, pdev->name, f);
> + if (ret) {
> + dev_err(dev, "failed to request irq: %d\n", ret);
> + goto err_disable_clk;
> + }
> +
> + mutex_init(&f->lock);
> +
> + ctlr->bus_num = -1;
> + ctlr->num_chipselect = NXP_FSPI_MAX_CHIPSELECT;
> + ctlr->mem_ops = &nxp_fspi_mem_ops;
> +
> + nxp_fspi_default_setup(f);
> +
> + ctlr->dev.of_node = np;
> +
> + ret = spi_register_controller(ctlr);
> + if (ret)
> + goto err_destroy_mutex;
> +
> + return 0;
> +
> +err_destroy_mutex:
> + mutex_destroy(&f->lock);
> +
> +err_disable_clk:
> + nxp_fspi_clk_disable_unprep(f);
> +
> +err_put_ctrl:
> + spi_controller_put(ctlr);
> +
> + dev_err(dev, "NXP FSPI probe failed\n");
> + return ret;
> +}
> +
> +static int nxp_fspi_remove(struct platform_device *pdev) {
> + struct nxp_fspi *f = platform_get_drvdata(pdev);
> +
> + /* disable the hardware */
> + fspi_writel(f, FSPI_MCR0_MDIS, f->iobase + FSPI_MCR0);
> +
> + nxp_fspi_clk_disable_unprep(f);
> +
> + mutex_destroy(&f->lock);
> +
> + return 0;
> +}
> +
> +static int nxp_fspi_suspend(struct device *dev) {
> + return 0;
> +}
> +
> +static int nxp_fspi_resume(struct device *dev) {
> + struct nxp_fspi *f = dev_get_drvdata(dev);
> +
> + nxp_fspi_default_setup(f);
> +
> + return 0;
> +}
> +
> +static const struct of_device_id nxp_fspi_dt_ids[] = {
> + { .compatible = "nxp,lx2160a-fspi", .data = (void *)&lx2160a_data, },
> + { /* sentinel */ }
> +};
> +MODULE_DEVICE_TABLE(of, nxp_fspi_dt_ids);
> +
> +static const struct dev_pm_ops nxp_fspi_pm_ops = {
> + .suspend = nxp_fspi_suspend,
> + .resume = nxp_fspi_resume,
> +};
> +
> +static struct platform_driver nxp_fspi_driver = {
> + .driver = {
> + .name = "nxp-fspi",
> + .of_match_table = nxp_fspi_dt_ids,
> + .pm = &nxp_fspi_pm_ops,
> + },
> + .probe = nxp_fspi_probe,
> + .remove = nxp_fspi_remove,
> +};
> +module_platform_driver(nxp_fspi_driver);
> +
> +MODULE_DESCRIPTION("NXP FSPI Controller Driver");
> MODULE_AUTHOR("NXP
> +Semiconductor"); MODULE_AUTHOR("Yogesh Narayan Gaur
> +<yogeshnarayan.gaur@nxp.com>"); MODULE_AUTHOR("Boris Brezillion
> +<bbrezillon@kernel.org>"); MODULE_AUTHOR("Frieder Schrempf
> +<frieder.schrempf@kontron.de>"); MODULE_LICENSE("GPL v2");
> --
> 2.17.1

\
 
 \ /
  Last update: 2019-01-22 09:55    [W:0.205 / U:76.376 seconds]
©2003-2020 Jasper Spaans|hosted at Digital Ocean and TransIP|Read the blog|Advertise on this site