lkml.org 
[lkml]   [2018]   [Sep]   [25]   [last100]   RSS Feed
Views: [wrap][no wrap]   [headers]  [forward] 
 
Messages in this thread
Patch in this message
/
From
Subject[LINUX PATCH v11 3/3] mtd: rawnand: arasan: Add support for Arasan NAND Flash Controller
Date
Add the basic driver for Arasan NAND Flash Controller used in
Zynq UltraScale+ MPSoC. It supports HW ECC and upto 24bit correction

Signed-off-by: Naga Sureshkumar Relli <naga.sureshkumar.relli@xilinx.com>
---
Changes in v11:
Fixed the below commits given by Boris
- implemented separate hooks for each pattern
- Changed EVNT_TIMEOUT_MSEC to EVENT_TIMEOUT_MSEC
- Grouped register offsets with theri fields, previously
there are defines at randome positions
- changes cmnds to cmds and s32 to u32
- Removed unnecessary fields from struct anfc_op
- Renamed bch and bchmode to strength and ecc_strength respectively
- Passed nand_chip object direclty to all functions
- Replace is_vmalloc_addr() with virt_addr_valid()
- Use default routines for read/write_oob()
- Added core support to get sdr timing mode value
Changes in v10:
- Implemented ->exec_op() interface.
- Converted the driver to nand_scan().
Changes in v9:
- Added the SPDX tags
Changes in v8:
- Implemented setup_data_interface hook
- fixed checkpatch --strict warnings
- Added anfc_config_ecc in read_page_hwecc
- Fixed returning status value by reading flash status in read_byte()
instead of reading previous value.
Changes in v7:
- Implemented Marek suggestions and comments
- Corrected the acronyms those should be in caps
- Modified kconfig/Make file to keep arasan entry in sorted order
- Added is_vmlloc_addr check
- Used ioread/write32_rep variants to avoid compilation error for intel
platforms
- separated PIO and DMA mode read/write functions
- Minor cleanup
Chnages in v6:
- Addressed most of the Brian and Boris comments
- Separated the nandchip from the nand controller
- Removed the ecc lookup table from driver
- Now use framework nand waitfunction and readoob
- Fixed the compiler warning
- Adapted the new frameowrk changes related to ecc and ooblayout
- Disabled the clocks after the nand_reelase
- Now using only one completion object
- Boris suggessions like adapting cmd_ctrl and rework on read/write byte
are not implemented and i will patch them later
- Also check_erased_ecc_chunk for erase and check for is_vmalloc_addr will
implement later once the basic driver is mainlined.
Changes in v5:
- Renamed the driver filei as arasan_nand.c
- Fixed all comments relaqted coding style
- Fixed comments related to propagating the errors
- Modified the anfc_write_page_hwecc as per the write_page
prototype
Changes in v4:
- Added support for onfi timing mode configuration
- Added clock supppport
- Added support for multiple chipselects
Changes in v3:
- Removed unused variables
- Avoided busy loop and used jifies based implementation
- Fixed compiler warnings "right shift count >= width of type"
- Removed unneeded codei and improved error reporting
- Added onfi version check to ensure reading the valid address cycles
Changes in v2:
- Added missing of.h to avoid kbuild system report erro
---
drivers/mtd/nand/raw/Kconfig | 7 +
drivers/mtd/nand/raw/Makefile | 1 +
drivers/mtd/nand/raw/arasan_nand.c | 1324 ++++++++++++++++++++++++++++++++++++
3 files changed, 1332 insertions(+)
create mode 100644 drivers/mtd/nand/raw/arasan_nand.c

diff --git a/drivers/mtd/nand/raw/Kconfig b/drivers/mtd/nand/raw/Kconfig
index b6738ec..0fadecb 100644
--- a/drivers/mtd/nand/raw/Kconfig
+++ b/drivers/mtd/nand/raw/Kconfig
@@ -560,4 +560,11 @@ config MTD_NAND_TEGRA
is supported. Extra OOB bytes when using HW ECC are currently
not supported.

+config MTD_NAND_ARASAN
+ tristate "Support for Arasan Nand Flash controller"
+ depends on HAS_IOMEM && HAS_DMA
+ help
+ Enables the driver for the Arasan Nand Flash controller on
+ Zynq Ultrascale+ MPSoC.
+
endif # MTD_NAND
diff --git a/drivers/mtd/nand/raw/Makefile b/drivers/mtd/nand/raw/Makefile
index d5a5f98..ccb8d56 100644
--- a/drivers/mtd/nand/raw/Makefile
+++ b/drivers/mtd/nand/raw/Makefile
@@ -57,6 +57,7 @@ obj-$(CONFIG_MTD_NAND_BRCMNAND) += brcmnand/
obj-$(CONFIG_MTD_NAND_QCOM) += qcom_nandc.o
obj-$(CONFIG_MTD_NAND_MTK) += mtk_ecc.o mtk_nand.o
obj-$(CONFIG_MTD_NAND_TEGRA) += tegra_nand.o
+obj-$(CONFIG_MTD_NAND_ARASAN) += arasan_nand.o

nand-objs := nand_base.o nand_bbt.o nand_timings.o nand_ids.o
nand-objs += nand_amd.o
diff --git a/drivers/mtd/nand/raw/arasan_nand.c b/drivers/mtd/nand/raw/arasan_nand.c
new file mode 100644
index 0000000..8c24fac
--- /dev/null
+++ b/drivers/mtd/nand/raw/arasan_nand.c
@@ -0,0 +1,1324 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Arasan NAND Flash Controller Driver
+ *
+ * Copyright (C) 2014 - 2017 Xilinx, Inc.
+ * Author: Punnaiah Choudary Kalluri <punnaia@xilinx.com>
+ * Author: Naga Sureshkumar Relli <nagasure@xilinx.com>
+ *
+ */
+#include <linux/clk.h>
+#include <linux/delay.h>
+#include <linux/dma-mapping.h>
+#include <linux/interrupt.h>
+#include <linux/io-64-nonatomic-lo-hi.h>
+#include <linux/module.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/rawnand.h>
+#include <linux/mtd/partitions.h>
+#include <linux/of.h>
+#include <linux/platform_device.h>
+#include <linux/slab.h>
+
+#define EVENT_TIMEOUT_MSEC 1000
+
+#define PKT_OFST 0x00
+#define PKT_CNT_SHIFT 12
+
+#define MEM_ADDR1_OFST 0x04
+#define MEM_ADDR2_OFST 0x08
+#define PG_ADDR_SHIFT 16
+#define BCH_MODE_SHIFT 25
+#define MEM_ADDR_MASK GENMASK(7, 0)
+#define BCH_MODE_MASK GENMASK(27, 25)
+#define CS_MASK GENMASK(31, 30)
+#define CS_SHIFT 30
+
+#define CMD_OFST 0x0C
+#define ECC_ENABLE BIT(31)
+#define DMA_EN_MASK GENMASK(27, 26)
+#define DMA_ENABLE 0x2
+#define DMA_EN_SHIFT 26
+#define REG_PAGE_SIZE_SHIFT 23
+
+#define PROG_OFST 0x10
+#define PROG_PGRD BIT(0)
+#define PROG_ERASE BIT(2)
+#define PROG_STATUS BIT(3)
+#define PROG_PGPROG BIT(4)
+#define PROG_RDID BIT(6)
+#define PROG_RDPARAM BIT(7)
+#define PROG_RST BIT(8)
+#define PROG_GET_FEATURE BIT(9)
+#define PROG_SET_FEATURE BIT(10)
+
+#define INTR_STS_EN_OFST 0x14
+#define INTR_SIG_EN_OFST 0x18
+#define XFER_COMPLETE BIT(2)
+#define READ_READY BIT(1)
+#define WRITE_READY BIT(0)
+#define MBIT_ERROR BIT(3)
+#define EVENT_MASK (XFER_COMPLETE | READ_READY | WRITE_READY | MBIT_ERROR)
+
+#define INTR_STS_OFST 0x1C
+#define READY_STS_OFST 0x20
+#define DMA_ADDR1_OFST 0x24
+#define FLASH_STS_OFST 0x28
+#define DATA_PORT_OFST 0x30
+#define ECC_OFST 0x34
+#define BCH_EN_SHIFT 27
+#define ECC_SIZE_SHIFT 16
+
+#define ECC_ERR_CNT_OFST 0x38
+#define PAGE_ERR_CNT_MASK GENMASK(16, 8)
+#define PKT_ERR_CNT_MASK GENMASK(7, 0)
+
+#define ECC_SPR_CMD_OFST 0x3C
+#define CMD2_SHIFT 8
+#define ADDR_CYCLES_SHIFT 28
+
+#define ECC_ERR_CNT_1BIT_OFST 0x40
+#define ECC_ERR_CNT_2BIT_OFST 0x44
+#define DMA_ADDR0_OFST 0x50
+#define DATA_INTERFACE_OFST 0x6C
+#define ANFC_MAX_CHUNK_SIZE 0x4000
+#define ANFC_MAX_ADDR_CYCLES 7
+
+#define REG_PAGE_SIZE_512 0
+#define REG_PAGE_SIZE_1K 5
+#define REG_PAGE_SIZE_2K 1
+#define REG_PAGE_SIZE_4K 2
+#define REG_PAGE_SIZE_8K 3
+#define REG_PAGE_SIZE_16K 4
+
+#define TEMP_BUF_SIZE 1024
+#define SDR_MODE_PACKET_SIZE 4
+
+#define SDR_MODE_DEFLT_FREQ 80000000
+#define COL_ROW_ADDR(pos, val) (((val) & 0xFF) << (8 * (pos)))
+
+struct anfc_op {
+ u32 cmds[4];
+ u32 len;
+ u32 col;
+ u32 row;
+ unsigned int data_instr_idx;
+ const struct nand_op_instr *data_instr;
+};
+
+/**
+ * struct anfc_nand_chip - Defines the nand chip related information
+ * @node: Used to store NAND chips into a list.
+ * @chip: NAND chip information structure.
+ * @strength: Bch or Hamming mode enable/disable.
+ * @ecc_strength: Ecc strength 4.8/12/16.
+ * @eccval: Ecc config value.
+ * @raddr_cycles: Row address cycle information.
+ * @caddr_cycles: Column address cycle information.
+ * @pktsize: Packet size for read / write operation.
+ * @csnum: chipselect number to be used.
+ * @spktsize: Packet size in ddr mode for status operation.
+ * @inftimeval: Data interface and timing mode information
+ */
+struct anfc_nand_chip {
+ struct list_head node;
+ struct nand_chip chip;
+ bool strength;
+ u32 ecc_strength;
+ u32 eccval;
+ u16 raddr_cycles;
+ u16 caddr_cycles;
+ u32 pktsize;
+ int csnum;
+ u32 spktsize;
+ u32 inftimeval;
+};
+
+/**
+ * struct anfc_nand_controller - Defines the Arasan NAND flash controller
+ * driver instance
+ * @controller: base controller structure.
+ * @chips: list of all nand chips attached to the ctrler.
+ * @dev: Pointer to the device structure.
+ * @base: Virtual address of the NAND flash device.
+ * @curr_cmd: Current command issued.
+ * @clk_sys: Pointer to the system clock.
+ * @clk_flash: Pointer to the flash clock.
+ * @dma: Dma enable/disable.
+ * @buf: Buffer used for read/write byte operations.
+ * @irq: irq number
+ * @bufshift: Variable used for indexing buffer operation
+ * @csnum: Chip select number currently inuse.
+ * @event: Completion event for nand status events.
+ * @status: Status of the flash device.
+ * @prog: Used to initiate controller operations.
+ */
+struct anfc_nand_controller {
+ struct nand_controller controller;
+ struct list_head chips;
+ struct device *dev;
+ void __iomem *base;
+ int curr_cmd;
+ struct clk *clk_sys;
+ struct clk *clk_flash;
+ int irq;
+ int csnum;
+ struct completion event;
+ int status;
+ u32 prog;
+ u8 buf[TEMP_BUF_SIZE];
+};
+
+static int anfc_ooblayout_ecc(struct mtd_info *mtd, int section,
+ struct mtd_oob_region *oobregion)
+{
+ struct nand_chip *nand = mtd_to_nand(mtd);
+
+ if (section >= nand->ecc.steps)
+ return -ERANGE;
+
+ if (section)
+ return -ERANGE;
+
+ oobregion->length = nand->ecc.total;
+ oobregion->offset = mtd->oobsize - oobregion->length;
+
+ return 0;
+}
+
+static int anfc_ooblayout_free(struct mtd_info *mtd, int section,
+ struct mtd_oob_region *oobregion)
+{
+ struct nand_chip *nand = mtd_to_nand(mtd);
+
+ if (section >= nand->ecc.steps)
+ return -ERANGE;
+
+ if (section)
+ return -ERANGE;
+
+ oobregion->offset = 2;
+ oobregion->length = mtd->oobsize - nand->ecc.total - 2;
+
+ return 0;
+}
+
+static const struct mtd_ooblayout_ops anfc_ooblayout_ops = {
+ .ecc = anfc_ooblayout_ecc,
+ .free = anfc_ooblayout_free,
+};
+
+static inline struct anfc_nand_chip *to_anfc_nand(struct nand_chip *nand)
+{
+ return container_of(nand, struct anfc_nand_chip, chip);
+}
+
+static inline struct anfc_nand_controller *to_anfc(struct nand_controller *ctrl)
+{
+ return container_of(ctrl, struct anfc_nand_controller, controller);
+}
+
+static u8 anfc_page(u32 pagesize)
+{
+ switch (pagesize) {
+ case 512:
+ return REG_PAGE_SIZE_512;
+ case 1024:
+ return REG_PAGE_SIZE_1K;
+ case 2048:
+ return REG_PAGE_SIZE_2K;
+ case 4096:
+ return REG_PAGE_SIZE_4K;
+ case 8192:
+ return REG_PAGE_SIZE_8K;
+ case 16384:
+ return REG_PAGE_SIZE_16K;
+ default:
+ break;
+ }
+
+ return 0;
+}
+
+static inline void anfc_enable_intrs(struct anfc_nand_controller *nfc, u32 val)
+{
+ writel(val, nfc->base + INTR_STS_EN_OFST);
+ writel(val, nfc->base + INTR_SIG_EN_OFST);
+}
+
+static inline void anfc_config_ecc(struct anfc_nand_controller *nfc, bool on)
+{
+ u32 val;
+
+ val = readl(nfc->base + CMD_OFST);
+ if (on)
+ val |= ECC_ENABLE;
+ else
+ val &= ~ECC_ENABLE;
+ writel(val, nfc->base + CMD_OFST);
+}
+
+static inline void anfc_config_dma(struct anfc_nand_controller *nfc, int on)
+{
+ u32 val;
+
+ val = readl(nfc->base + CMD_OFST);
+ val &= ~DMA_EN_MASK;
+ if (on)
+ val |= DMA_ENABLE << DMA_EN_SHIFT;
+ writel(val, nfc->base + CMD_OFST);
+}
+
+static inline int anfc_wait_for_event(struct anfc_nand_controller *nfc)
+{
+ return wait_for_completion_timeout(&nfc->event,
+ msecs_to_jiffies(EVENT_TIMEOUT_MSEC));
+}
+
+static inline void anfc_setpktszcnt(struct anfc_nand_controller *nfc,
+ u32 pktsize, u32 pktcount)
+{
+ writel(pktsize | (pktcount << PKT_CNT_SHIFT), nfc->base + PKT_OFST);
+}
+
+static inline void anfc_set_eccsparecmd(struct anfc_nand_controller *nfc,
+ struct anfc_nand_chip *achip, u8 cmd1,
+ u8 cmd2)
+{
+ writel(cmd1 | (cmd2 << CMD2_SHIFT) |
+ (achip->caddr_cycles << ADDR_CYCLES_SHIFT),
+ nfc->base + ECC_SPR_CMD_OFST);
+}
+
+static void anfc_setpagecoladdr(struct anfc_nand_controller *nfc, u32 page,
+ u16 col)
+{
+ u32 val;
+
+ writel(col | (page << PG_ADDR_SHIFT), nfc->base + MEM_ADDR1_OFST);
+
+ val = readl(nfc->base + MEM_ADDR2_OFST);
+ val = (val & ~MEM_ADDR_MASK) |
+ ((page >> PG_ADDR_SHIFT) & MEM_ADDR_MASK);
+ writel(val, nfc->base + MEM_ADDR2_OFST);
+}
+
+static void anfc_prepare_cmd(struct anfc_nand_controller *nfc, u8 cmd1,
+ u8 cmd2, u8 dmamode,
+ u32 pagesize, u8 addrcycles)
+{
+ u32 regval;
+
+ regval = cmd1 | (cmd2 << CMD2_SHIFT);
+ if (dmamode)
+ regval |= DMA_ENABLE << DMA_EN_SHIFT;
+ regval |= addrcycles << ADDR_CYCLES_SHIFT;
+ regval |= anfc_page(pagesize) << REG_PAGE_SIZE_SHIFT;
+ writel(regval, nfc->base + CMD_OFST);
+}
+
+static void anfc_rw_dma_op(struct mtd_info *mtd, u8 *buf, int len,
+ bool do_read, u32 prog, int pktcount, int pktsize)
+{
+ dma_addr_t paddr;
+ struct nand_chip *chip = mtd_to_nand(mtd);
+ struct anfc_nand_controller *nfc = to_anfc(chip->controller);
+ struct anfc_nand_chip *achip = to_anfc_nand(chip);
+ u32 eccintr = 0, dir;
+
+ if (pktsize == 0)
+ pktsize = len;
+
+ anfc_setpktszcnt(nfc, pktsize, pktcount);
+
+ if (!achip->strength)
+ eccintr = MBIT_ERROR;
+
+ if (do_read)
+ dir = DMA_FROM_DEVICE;
+ else
+ dir = DMA_TO_DEVICE;
+
+ paddr = dma_map_single(nfc->dev, buf, len, dir);
+ if (dma_mapping_error(nfc->dev, paddr)) {
+ dev_err(nfc->dev, "Read buffer mapping error");
+ return;
+ }
+ writel(paddr, nfc->base + DMA_ADDR0_OFST);
+ writel((paddr >> 32), nfc->base + DMA_ADDR1_OFST);
+ anfc_enable_intrs(nfc, (XFER_COMPLETE | eccintr));
+ writel(prog, nfc->base + PROG_OFST);
+ anfc_wait_for_event(nfc);
+ dma_unmap_single(nfc->dev, paddr, len, dir);
+}
+
+static void anfc_rw_pio_op(struct mtd_info *mtd, u8 *buf, int len,
+ bool do_read, int prog, int pktcount, int pktsize)
+{
+ struct nand_chip *chip = mtd_to_nand(mtd);
+ struct anfc_nand_controller *nfc = to_anfc(chip->controller);
+ struct anfc_nand_chip *achip = to_anfc_nand(chip);
+ u32 *bufptr = (u32 *)buf;
+ u32 cnt = 0, intr = 0;
+
+ anfc_config_dma(nfc, 0);
+
+ if (pktsize == 0)
+ pktsize = len;
+
+ anfc_setpktszcnt(nfc, pktsize, pktcount);
+
+ if (!achip->strength)
+ intr = MBIT_ERROR;
+
+ if (do_read)
+ intr |= READ_READY;
+ else
+ intr |= WRITE_READY;
+
+ anfc_enable_intrs(nfc, intr);
+ writel(prog, nfc->base + PROG_OFST);
+ while (cnt < pktcount) {
+ anfc_wait_for_event(nfc);
+ cnt++;
+ if (cnt == pktcount)
+ anfc_enable_intrs(nfc, XFER_COMPLETE);
+ if (do_read)
+ ioread32_rep(nfc->base + DATA_PORT_OFST, bufptr,
+ pktsize / 4);
+ else
+ iowrite32_rep(nfc->base + DATA_PORT_OFST, bufptr,
+ pktsize / 4);
+ bufptr += (pktsize / 4);
+ if (cnt < pktcount)
+ anfc_enable_intrs(nfc, intr);
+ }
+ anfc_wait_for_event(nfc);
+}
+
+static void anfc_read_data_op(struct nand_chip *chip, u8 *buf, int len,
+ int pktcount, int pktsize)
+{
+ struct mtd_info *mtd = nand_to_mtd(chip);
+
+ if (virt_addr_valid(buf))
+ anfc_rw_dma_op(mtd, buf, len, 1, PROG_PGRD, pktcount, pktsize);
+ else
+ anfc_rw_pio_op(mtd, buf, len, 1, PROG_PGRD, pktcount, pktsize);
+}
+
+static void anfc_write_data_op(struct nand_chip *chip, const u8 *buf,
+ int len, int pktcount, int pktsize)
+{
+ struct mtd_info *mtd = nand_to_mtd(chip);
+
+ if (virt_addr_valid(buf))
+ anfc_rw_dma_op(mtd, (char *)buf, len, 0, PROG_PGPROG, pktcount,
+ pktsize);
+ else
+ anfc_rw_pio_op(mtd, (char *)buf, len, 0, PROG_PGPROG, pktcount,
+ pktsize);
+}
+
+static int anfc_read_page_hwecc(struct mtd_info *mtd,
+ struct nand_chip *chip, u8 *buf,
+ int oob_required, int page)
+{
+ struct anfc_nand_controller *nfc = to_anfc(chip->controller);
+ struct anfc_nand_chip *achip = to_anfc_nand(chip);
+ u8 *ecc_code = chip->ecc.code_buf;
+ u8 *p;
+ int eccsize = chip->ecc.size;
+ int eccbytes = chip->ecc.bytes;
+ int stat = 0, i;
+ u32 ret;
+ unsigned int max_bitflips = 0;
+ u32 eccsteps;
+ u32 one_bit_err = 0, multi_bit_err = 0;
+
+ ret = nand_read_page_op(chip, page, 0, NULL, 0);
+ if (ret)
+ return ret;
+
+ anfc_set_eccsparecmd(nfc, achip, NAND_CMD_RNDOUT, NAND_CMD_RNDOUTSTART);
+ anfc_config_ecc(nfc, true);
+ anfc_read_data_op(chip, buf, mtd->writesize,
+ DIV_ROUND_UP(mtd->writesize, achip->pktsize),
+ achip->pktsize);
+
+ if (achip->strength) {
+ /*
+ * In BCH mode Arasan NAND controller can correct ECC upto
+ * 24-bit Beyond that, it can't even detect errors.
+ */
+ multi_bit_err = readl(nfc->base + ECC_ERR_CNT_OFST);
+ multi_bit_err = ((multi_bit_err & PAGE_ERR_CNT_MASK) >> 8);
+ } else {
+ /*
+ * In Hamming mode Arasan NAND controller can correct ECC upto
+ * 1-bit and can detect upto 4-bit errors.
+ */
+ one_bit_err = readl(nfc->base + ECC_ERR_CNT_1BIT_OFST);
+ multi_bit_err = readl(nfc->base + ECC_ERR_CNT_2BIT_OFST);
+
+ /* Clear ecc error count register 1Bit, 2Bit */
+ writel(0x0, nfc->base + ECC_ERR_CNT_1BIT_OFST);
+ writel(0x0, nfc->base + ECC_ERR_CNT_2BIT_OFST);
+ }
+
+ anfc_config_ecc(nfc, false);
+
+ if (oob_required)
+ chip->ecc.read_oob(mtd, chip, page);
+
+ if (multi_bit_err || one_bit_err) {
+ if (!oob_required)
+ chip->ecc.read_oob(mtd, chip, page);
+
+ mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
+ chip->ecc.total);
+ eccsteps = chip->ecc.steps;
+ p = buf;
+ for (i = 0 ; eccsteps; eccsteps--, i += eccbytes,
+ p += eccsize) {
+ stat = nand_check_erased_ecc_chunk(p,
+ chip->ecc.size,
+ &ecc_code[i],
+ eccbytes,
+ NULL, 0,
+ chip->ecc.strength);
+ if (stat < 0) {
+ mtd->ecc_stats.failed++;
+ } else {
+ mtd->ecc_stats.corrected += stat;
+ max_bitflips = max_t(unsigned int, max_bitflips,
+ stat);
+ }
+ }
+ }
+
+ return max_bitflips;
+}
+
+static int anfc_write_page_hwecc(struct mtd_info *mtd,
+ struct nand_chip *chip, const u8 *buf,
+ int oob_required, int page)
+{
+ int ret;
+ struct anfc_nand_controller *nfc = to_anfc(chip->controller);
+ struct anfc_nand_chip *achip = to_anfc_nand(chip);
+
+ ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
+ if (ret)
+ return ret;
+
+ anfc_set_eccsparecmd(nfc, achip, NAND_CMD_RNDIN, 0);
+ anfc_config_ecc(nfc, true);
+ anfc_write_data_op(chip, buf, mtd->writesize,
+ DIV_ROUND_UP(mtd->writesize, achip->pktsize),
+ achip->pktsize);
+
+ if (oob_required)
+ chip->ecc.write_oob(mtd, chip, page);
+
+ anfc_config_ecc(nfc, false);
+
+ return 0;
+}
+
+static int anfc_ecc_init(struct mtd_info *mtd,
+ struct nand_ecc_ctrl *ecc, int ecc_mode)
+{
+ u32 ecc_addr;
+ unsigned int ecc_strength, steps;
+ struct nand_chip *chip = mtd_to_nand(mtd);
+ struct anfc_nand_chip *achip = to_anfc_nand(chip);
+
+ ecc->mode = NAND_ECC_HW;
+ ecc->read_page = anfc_read_page_hwecc;
+ ecc->write_page = anfc_write_page_hwecc;
+
+ mtd_set_ooblayout(mtd, &anfc_ooblayout_ops);
+
+ steps = mtd->writesize / chip->ecc_step_ds;
+
+ switch (chip->ecc_strength_ds) {
+ case 12:
+ ecc_strength = 0x1;
+ break;
+ case 8:
+ ecc_strength = 0x2;
+ break;
+ case 4:
+ ecc_strength = 0x3;
+ break;
+ case 24:
+ ecc_strength = 0x4;
+ break;
+ default:
+ ecc_strength = 0x0;
+ }
+ if (!ecc_strength)
+ ecc->total = 3 * steps;
+ else
+ ecc->total =
+ DIV_ROUND_UP(fls(8 * chip->ecc_step_ds) *
+ chip->ecc_strength_ds * steps, 8);
+
+ ecc->strength = chip->ecc_strength_ds;
+ ecc->size = chip->ecc_step_ds;
+ ecc->bytes = ecc->total / steps;
+ ecc->steps = steps;
+ achip->ecc_strength = ecc_strength;
+ achip->strength = achip->ecc_strength;
+ ecc_addr = mtd->writesize + (mtd->oobsize - ecc->total);
+ achip->eccval = ecc_addr | (ecc->total << ECC_SIZE_SHIFT) |
+ (achip->strength << BCH_EN_SHIFT);
+
+ if (chip->ecc_step_ds >= 1024)
+ achip->pktsize = 1024;
+ else
+ achip->pktsize = 512;
+
+ return 0;
+}
+
+/* NAND framework ->exec_op() hooks and related helpers */
+static void anfc_parse_instructions(struct nand_chip *chip,
+ const struct nand_subop *subop,
+ struct anfc_op *nfc_op)
+{
+ const struct nand_op_instr *instr = NULL;
+ struct anfc_nand_controller *nfc = to_anfc(chip->controller);
+ unsigned int op_id;
+ int i = 0;
+ const u8 *addrs;
+
+ memset(nfc_op, 0, sizeof(struct anfc_op));
+ for (op_id = 0; op_id < subop->ninstrs; op_id++) {
+ unsigned int naddrs;
+
+ instr = &subop->instrs[op_id];
+ switch (instr->type) {
+ case NAND_OP_CMD_INSTR:
+ if (op_id)
+ nfc_op->cmds[1] = instr->ctx.cmd.opcode;
+ else
+ nfc_op->cmds[0] = instr->ctx.cmd.opcode;
+ nfc->curr_cmd = nfc_op->cmds[0];
+
+ break;
+
+ case NAND_OP_ADDR_INSTR:
+ i = nand_subop_get_addr_start_off(subop, op_id);
+ naddrs = nand_subop_get_num_addr_cyc(subop,
+ op_id);
+ addrs = &instr->ctx.addr.addrs[i];
+
+ for (; i < naddrs; i++) {
+ u8 val = instr->ctx.addr.addrs[i];
+
+ if (nfc_op->cmds[0] == NAND_CMD_ERASE1) {
+ nfc_op->row |= COL_ROW_ADDR(i, val);
+ } else {
+ if (i < 2)
+ nfc_op->col |= COL_ROW_ADDR(i,
+ val);
+ else
+ nfc_op->row |= COL_ROW_ADDR(i -
+ 2, val);
+ }
+ }
+ break;
+ case NAND_OP_DATA_IN_INSTR:
+ nfc_op->data_instr = instr;
+ nfc_op->data_instr_idx = op_id;
+ break;
+ case NAND_OP_DATA_OUT_INSTR:
+ nfc_op->data_instr = instr;
+ nfc_op->data_instr_idx = op_id;
+ break;
+ case NAND_OP_WAITRDY_INSTR:
+ break;
+ }
+ }
+}
+
+static int anfc_reset_cmd_type_exec(struct nand_chip *chip,
+ const struct nand_subop *subop)
+{
+ struct anfc_op nfc_op = {};
+ struct anfc_nand_controller *nfc = to_anfc(chip->controller);
+
+ anfc_parse_instructions(chip, subop, &nfc_op);
+ anfc_prepare_cmd(nfc, nfc_op.cmds[0], 0, 0, 0, 0);
+ nfc->prog = PROG_RST;
+ anfc_enable_intrs(nfc, XFER_COMPLETE);
+ writel(nfc->prog, nfc->base + PROG_OFST);
+ anfc_wait_for_event(nfc);
+
+ return 0;
+}
+
+static int anfc_read_id_type_exec(struct nand_chip *chip,
+ const struct nand_subop *subop)
+{
+ const struct nand_op_instr *instr;
+ struct anfc_op nfc_op = {};
+ unsigned int op_id, len;
+ struct anfc_nand_controller *nfc = to_anfc(chip->controller);
+ struct mtd_info *mtd = nand_to_mtd(chip);
+
+ anfc_parse_instructions(chip, subop, &nfc_op);
+ instr = nfc_op.data_instr;
+ op_id = nfc_op.data_instr_idx;
+ len = nand_subop_get_data_len(subop, op_id);
+ anfc_prepare_cmd(nfc, nfc_op.cmds[0], 0, 0, 0, 1);
+ anfc_setpagecoladdr(nfc, nfc_op.row, nfc_op.col);
+ nfc->prog = PROG_RDID;
+ anfc_rw_pio_op(mtd, nfc->buf, roundup(len, 4), 1, PROG_RDID, 1, 0);
+ memcpy(instr->ctx.data.buf.in, nfc->buf, len);
+
+ return 0;
+}
+
+static int anfc_read_status_exec(struct nand_chip *chip,
+ const struct nand_subop *subop)
+{
+ const struct nand_op_instr *instr;
+ struct anfc_op nfc_op = {};
+ unsigned int op_id, len;
+ struct anfc_nand_chip *achip = to_anfc_nand(chip);
+ struct anfc_nand_controller *nfc = to_anfc(chip->controller);
+
+ anfc_parse_instructions(chip, subop, &nfc_op);
+ instr = nfc_op.data_instr;
+ op_id = nfc_op.data_instr_idx;
+
+ anfc_prepare_cmd(nfc, nfc_op.cmds[0], 0, 0, 0, 0);
+ anfc_setpktszcnt(nfc, achip->spktsize / 4, 1);
+ anfc_setpagecoladdr(nfc, nfc_op.row, nfc_op.col);
+ nfc->prog = PROG_STATUS;
+
+ anfc_enable_intrs(nfc, XFER_COMPLETE);
+ writel(nfc->prog, nfc->base + PROG_OFST);
+ anfc_wait_for_event(nfc);
+
+ if (!nfc_op.data_instr)
+ return 0;
+
+ len = nand_subop_get_data_len(subop, op_id);
+
+ /*
+ * The Arasan NAND controller will update the status value
+ * returned by the flash device in FLASH_STS register.
+ */
+ nfc->status = readl(nfc->base + FLASH_STS_OFST);
+ memcpy(instr->ctx.data.buf.in, &nfc->status, len);
+
+ return 0;
+}
+
+static int anfc_erase_and_zero_len_page_read_type_exec(struct nand_chip *chip,
+ const struct nand_subop
+ *subop)
+{
+ const struct nand_op_instr *instr;
+ struct anfc_nand_chip *achip = to_anfc_nand(chip);
+ struct anfc_nand_controller *nfc = to_anfc(chip->controller);
+ struct anfc_op nfc_op = {};
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ u32 dma_mode = 0, write_size = 0, addrcycles = 0, len, op_id;
+
+ anfc_parse_instructions(chip, subop, &nfc_op);
+ instr = nfc_op.data_instr;
+ op_id = nfc_op.data_instr_idx;
+
+ if (nfc_op.cmds[0] == NAND_CMD_ERASE1) {
+ nfc->prog = PROG_ERASE;
+ addrcycles = achip->raddr_cycles;
+ write_size = 0;
+ dma_mode = 0;
+ nfc_op.col = nfc_op.row & 0xffff;
+ nfc_op.row = (nfc_op.row >> PG_ADDR_SHIFT) & 0xffff;
+ }
+ if (nfc_op.cmds[0] == NAND_CMD_READ0) {
+ nfc->prog = PROG_PGRD;
+ addrcycles = achip->raddr_cycles + achip->caddr_cycles;
+ write_size = mtd->writesize;
+ dma_mode = 1;
+ }
+
+ anfc_prepare_cmd(nfc, nfc_op.cmds[0], nfc_op.cmds[1], dma_mode,
+ write_size, addrcycles);
+ anfc_setpagecoladdr(nfc, nfc_op.row, nfc_op.col);
+
+ if (nfc_op.cmds[0] == NAND_CMD_ERASE1) {
+ anfc_enable_intrs(nfc, XFER_COMPLETE);
+ writel(nfc->prog, nfc->base + PROG_OFST);
+ anfc_wait_for_event(nfc);
+ }
+
+ if (!nfc_op.data_instr)
+ return 0;
+
+ len = nand_subop_get_data_len(subop, op_id);
+ anfc_read_data_op(chip, instr->ctx.data.buf.in, len, 1, 0);
+
+ return 0;
+}
+
+static int anfc_read_param_get_feature_sp_read_type_exec(struct nand_chip *chip,
+ const struct nand_subop
+ *subop)
+{
+ const struct nand_op_instr *instr;
+ struct anfc_nand_controller *nfc = to_anfc(chip->controller);
+ unsigned int op_id, len;
+ struct anfc_op nfc_op = {};
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ struct anfc_nand_chip *achip = to_anfc_nand(chip);
+ u32 dma_mode, addrcycles, write_size;
+
+ anfc_parse_instructions(chip, subop, &nfc_op);
+ instr = nfc_op.data_instr;
+ op_id = nfc_op.data_instr_idx;
+
+ if (nfc_op.cmds[0] == NAND_CMD_PARAM) {
+ nfc->prog = PROG_RDPARAM;
+ dma_mode = 0;
+ addrcycles = 1;
+ write_size = 0;
+ }
+ if (nfc_op.cmds[0] == NAND_CMD_GET_FEATURES) {
+ nfc->prog = PROG_GET_FEATURE;
+ dma_mode = 0;
+ addrcycles = 1;
+ write_size = 0;
+ }
+ if (nfc_op.cmds[0] == NAND_CMD_READ0) {
+ nfc->prog = PROG_PGRD;
+ addrcycles = achip->raddr_cycles + achip->caddr_cycles;
+ write_size = mtd->writesize;
+ dma_mode = 1;
+ }
+
+ anfc_prepare_cmd(nfc, nfc_op.cmds[0], 0, dma_mode, write_size,
+ addrcycles);
+ anfc_setpagecoladdr(nfc, nfc_op.row, nfc_op.col);
+
+ if (!nfc_op.data_instr)
+ return 0;
+
+ len = nand_subop_get_data_len(subop, op_id);
+ anfc_rw_pio_op(mtd, nfc->buf, roundup(len, 4), 1, nfc->prog, 1, 0);
+ memcpy(instr->ctx.data.buf.in, nfc->buf, len);
+
+ return 0;
+}
+
+static int anfc_random_datain_type_exec(struct nand_chip *chip,
+ const struct nand_subop *subop)
+{
+ const struct nand_op_instr *instr;
+ struct anfc_nand_controller *nfc = to_anfc(chip->controller);
+ unsigned int op_id, len;
+ struct anfc_op nfc_op = {};
+ struct mtd_info *mtd = nand_to_mtd(chip);
+
+ anfc_parse_instructions(chip, subop, &nfc_op);
+ instr = nfc_op.data_instr;
+ op_id = nfc_op.data_instr_idx;
+
+ len = nand_subop_get_data_len(subop, op_id);
+ anfc_rw_pio_op(mtd, nfc->buf, roundup(len, 4), 1, PROG_PGRD, 1, 0);
+ memcpy(instr->ctx.data.buf.in, nfc->buf, len);
+
+ return 0;
+}
+
+static int anfc_setfeature_type_exec(struct nand_chip *chip,
+ const struct nand_subop *subop)
+{
+ const struct nand_op_instr *instr;
+ struct anfc_nand_controller *nfc = to_anfc(chip->controller);
+ unsigned int op_id, len;
+ struct anfc_op nfc_op = {};
+ struct mtd_info *mtd = nand_to_mtd(chip);
+
+ anfc_parse_instructions(chip, subop, &nfc_op);
+ nfc->prog = PROG_SET_FEATURE;
+ instr = nfc_op.data_instr;
+ op_id = nfc_op.data_instr_idx;
+ anfc_prepare_cmd(nfc, nfc_op.cmds[0], 0, 0, 0, 1);
+ anfc_setpagecoladdr(nfc, nfc_op.row, nfc_op.col);
+
+ if (!nfc_op.data_instr)
+ return 0;
+
+ len = nand_subop_get_data_len(subop, op_id);
+ memcpy(nfc->buf, (char *)instr->ctx.data.buf.out, len);
+ anfc_rw_pio_op(mtd, nfc->buf, roundup(len, 4), 0, nfc->prog, 1, 0);
+
+ return 0;
+}
+
+static int anfc_change_read_column_type_exec(struct nand_chip *chip,
+ const struct nand_subop *subop)
+{
+ const struct nand_op_instr *instr;
+ struct anfc_nand_controller *nfc = to_anfc(chip->controller);
+ unsigned int op_id, len;
+ struct anfc_op nfc_op = {};
+ struct mtd_info *mtd = nand_to_mtd(chip);
+
+ anfc_parse_instructions(chip, subop, &nfc_op);
+ nfc->prog = PROG_PGRD;
+ instr = nfc_op.data_instr;
+ op_id = nfc_op.data_instr_idx;
+
+ anfc_prepare_cmd(nfc, nfc_op.cmds[0], nfc_op.cmds[1], 1,
+ mtd->writesize, 2);
+ anfc_setpagecoladdr(nfc, nfc_op.row, nfc_op.col);
+
+ if (!nfc_op.data_instr)
+ return 0;
+
+ len = nand_subop_get_data_len(subop, op_id);
+ anfc_rw_pio_op(mtd, nfc->buf, roundup(len, 4), 1, nfc->prog, 1, 0);
+ memcpy(instr->ctx.data.buf.in, nfc->buf, len);
+
+ return 0;
+}
+
+static int anfc_page_read_type_exec(struct nand_chip *chip,
+ const struct nand_subop *subop)
+{
+ const struct nand_op_instr *instr;
+ struct anfc_nand_chip *achip = to_anfc_nand(chip);
+ struct anfc_nand_controller *nfc = to_anfc(chip->controller);
+ unsigned int op_id, len;
+ struct anfc_op nfc_op = {};
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ u32 addrcycles;
+
+ anfc_parse_instructions(chip, subop, &nfc_op);
+ nfc->prog = PROG_PGRD;
+ instr = nfc_op.data_instr;
+ op_id = nfc_op.data_instr_idx;
+
+ addrcycles = achip->raddr_cycles + achip->caddr_cycles;
+
+ anfc_prepare_cmd(nfc, nfc_op.cmds[0], nfc_op.cmds[1], 1,
+ mtd->writesize, addrcycles);
+ anfc_setpagecoladdr(nfc, nfc_op.row, nfc_op.col);
+
+ if (!nfc_op.data_instr)
+ return 0;
+
+ len = nand_subop_get_data_len(subop, op_id);
+
+ anfc_rw_pio_op(mtd, nfc->buf, roundup(len, 4), 1, nfc->prog, 1, 0);
+ memcpy(instr->ctx.data.buf.in, nfc->buf, len);
+
+ return 0;
+}
+
+static int anfc_zero_len_page_write_type_exec(struct nand_chip *chip,
+ const struct nand_subop *subop)
+{
+ const struct nand_op_instr *instr;
+ struct anfc_nand_chip *achip = to_anfc_nand(chip);
+ struct anfc_nand_controller *nfc = to_anfc(chip->controller);
+ unsigned int op_id;
+ struct anfc_op nfc_op = {};
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ u32 addrcycles;
+
+ anfc_parse_instructions(chip, subop, &nfc_op);
+ nfc->prog = PROG_PGRD;
+ instr = nfc_op.data_instr;
+ op_id = nfc_op.data_instr_idx;
+
+ addrcycles = achip->raddr_cycles + achip->caddr_cycles;
+
+ anfc_prepare_cmd(nfc, nfc_op.cmds[0], NAND_CMD_PAGEPROG, 1,
+ mtd->writesize, addrcycles);
+ anfc_setpagecoladdr(nfc, nfc_op.row, nfc_op.col);
+
+ return 0;
+}
+
+static int anfc_page_write_type_exec(struct nand_chip *chip,
+ const struct nand_subop *subop)
+{
+ const struct nand_op_instr *instr;
+ struct anfc_nand_chip *achip = to_anfc_nand(chip);
+ struct anfc_nand_controller *nfc = to_anfc(chip->controller);
+ unsigned int op_id, len;
+ struct anfc_op nfc_op = {};
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ u32 addrcycles;
+
+ anfc_parse_instructions(chip, subop, &nfc_op);
+ instr = nfc_op.data_instr;
+ op_id = nfc_op.data_instr_idx;
+ nfc->prog = PROG_PGPROG;
+
+ addrcycles = achip->raddr_cycles + achip->caddr_cycles;
+ anfc_prepare_cmd(nfc, nfc_op.cmds[0], nfc_op.cmds[1], 1,
+ mtd->writesize, addrcycles);
+ anfc_setpagecoladdr(nfc, nfc_op.row, nfc_op.col);
+
+ if (!nfc_op.data_instr)
+ return 0;
+
+ len = nand_subop_get_data_len(subop, op_id);
+ anfc_write_data_op(chip, (char *)instr->ctx.data.buf.out, len, 1, 0);
+
+ return 0;
+}
+
+static const struct nand_op_parser anfc_op_parser = NAND_OP_PARSER(
+ /* Use a separate function for each pattern */
+ NAND_OP_PARSER_PATTERN(
+ anfc_random_datain_type_exec,
+ NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, ANFC_MAX_CHUNK_SIZE)),
+ NAND_OP_PARSER_PATTERN(
+ anfc_change_read_column_type_exec,
+ NAND_OP_PARSER_PAT_CMD_ELEM(false),
+ NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYCLES),
+ NAND_OP_PARSER_PAT_CMD_ELEM(false),
+ NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, ANFC_MAX_CHUNK_SIZE)),
+ NAND_OP_PARSER_PATTERN(
+ anfc_page_read_type_exec,
+ NAND_OP_PARSER_PAT_CMD_ELEM(false),
+ NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYCLES),
+ NAND_OP_PARSER_PAT_CMD_ELEM(false),
+ NAND_OP_PARSER_PAT_WAITRDY_ELEM(false),
+ NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, ANFC_MAX_CHUNK_SIZE)),
+ NAND_OP_PARSER_PATTERN(
+ anfc_page_write_type_exec,
+ NAND_OP_PARSER_PAT_CMD_ELEM(false),
+ NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYCLES),
+ NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, ANFC_MAX_CHUNK_SIZE),
+ NAND_OP_PARSER_PAT_CMD_ELEM(false),
+ NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
+ NAND_OP_PARSER_PATTERN(
+ anfc_read_id_type_exec,
+ NAND_OP_PARSER_PAT_CMD_ELEM(false),
+ NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYCLES),
+ NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, ANFC_MAX_CHUNK_SIZE)),
+ NAND_OP_PARSER_PATTERN(
+ anfc_erase_and_zero_len_page_read_type_exec,
+ NAND_OP_PARSER_PAT_CMD_ELEM(false),
+ NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYCLES),
+ NAND_OP_PARSER_PAT_CMD_ELEM(false),
+ NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
+ NAND_OP_PARSER_PATTERN(
+ anfc_read_status_exec,
+ NAND_OP_PARSER_PAT_CMD_ELEM(false),
+ NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 1)),
+ NAND_OP_PARSER_PATTERN(
+ anfc_reset_cmd_type_exec,
+ NAND_OP_PARSER_PAT_CMD_ELEM(false),
+ NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
+ NAND_OP_PARSER_PATTERN(
+ anfc_setfeature_type_exec,
+ NAND_OP_PARSER_PAT_CMD_ELEM(false),
+ NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYCLES),
+ NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, ANFC_MAX_CHUNK_SIZE),
+ NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
+ NAND_OP_PARSER_PATTERN(
+ anfc_read_param_get_feature_sp_read_type_exec,
+ NAND_OP_PARSER_PAT_CMD_ELEM(false),
+ NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYCLES),
+ NAND_OP_PARSER_PAT_WAITRDY_ELEM(false),
+ NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, ANFC_MAX_CHUNK_SIZE)),
+ NAND_OP_PARSER_PATTERN(
+ anfc_zero_len_page_write_type_exec,
+ NAND_OP_PARSER_PAT_CMD_ELEM(false),
+ NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYCLES)),
+ );
+
+static int anfc_exec_op(struct nand_chip *chip,
+ const struct nand_operation *op,
+ bool check_only)
+{
+ return nand_op_parser_exec_op(chip, &anfc_op_parser,
+ op, check_only);
+}
+
+static void anfc_select_chip(struct mtd_info *mtd, int num)
+{
+ u32 val;
+ struct nand_chip *chip = mtd_to_nand(mtd);
+ struct anfc_nand_chip *achip = to_anfc_nand(chip);
+ struct anfc_nand_controller *nfc = to_anfc(chip->controller);
+
+ if (num < 0)
+ return;
+
+ val = readl(nfc->base + MEM_ADDR2_OFST);
+ val &= (val & ~(CS_MASK | BCH_MODE_MASK));
+ val |= (achip->csnum << CS_SHIFT) |
+ (achip->ecc_strength << BCH_MODE_SHIFT);
+ writel(val, nfc->base + MEM_ADDR2_OFST);
+ nfc->csnum = achip->csnum;
+ writel(achip->eccval, nfc->base + ECC_OFST);
+ writel(achip->inftimeval, nfc->base + DATA_INTERFACE_OFST);
+}
+
+static irqreturn_t anfc_irq_handler(int irq, void *ptr)
+{
+ struct anfc_nand_controller *nfc = ptr;
+ u32 status;
+
+ status = readl(nfc->base + INTR_STS_OFST);
+ if (status & EVENT_MASK) {
+ complete(&nfc->event);
+ writel(status & EVENT_MASK, nfc->base + INTR_STS_OFST);
+ writel(0, nfc->base + INTR_STS_EN_OFST);
+ writel(0, nfc->base + INTR_SIG_EN_OFST);
+ return IRQ_HANDLED;
+ }
+
+ return IRQ_NONE;
+}
+
+static int anfc_setup_data_interface(struct mtd_info *mtd, int csline,
+ const struct nand_data_interface *conf)
+{
+ struct nand_chip *chip = mtd_to_nand(mtd);
+ struct anfc_nand_controller *nfc = to_anfc(chip->controller);
+ struct anfc_nand_chip *achip = to_anfc_nand(chip);
+ int err;
+ const struct nand_sdr_timings *sdr;
+ u32 inftimeval;
+ bool change_sdr_clk = false;
+
+ if (csline == NAND_DATA_IFACE_CHECK_ONLY)
+ return 0;
+
+ /*
+ * If the controller is already in the same mode as flash device
+ * then no need to change the timing mode again.
+ */
+ sdr = nand_get_sdr_timings(conf);
+ if (IS_ERR(sdr))
+ return PTR_ERR(sdr);
+
+ if (sdr->mode < 0)
+ return -ENOTSUPP;
+
+ inftimeval = sdr->mode & 7;
+ if (sdr->mode >= 2 && sdr->mode <= 5)
+ change_sdr_clk = true;
+ /*
+ * SDR timing modes 2-5 will not work for the arasan nand when
+ * freq > 90 MHz, so reduce the freq in SDR modes 2-5 to < 90Mhz
+ */
+ if (change_sdr_clk) {
+ clk_disable_unprepare(nfc->clk_sys);
+ err = clk_set_rate(nfc->clk_sys, SDR_MODE_DEFLT_FREQ);
+ if (err) {
+ dev_err(nfc->dev, "Can't set the clock rate\n");
+ return err;
+ }
+ err = clk_prepare_enable(nfc->clk_sys);
+ if (err) {
+ dev_err(nfc->dev, "Unable to enable sys clock.\n");
+ clk_disable_unprepare(nfc->clk_sys);
+ return err;
+ }
+ }
+ achip->inftimeval = inftimeval;
+
+ return 0;
+}
+
+static int anfc_nand_attach_chip(struct nand_chip *chip)
+{
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ struct anfc_nand_chip *achip = to_anfc_nand(chip);
+ u32 ret;
+
+ if (mtd->writesize <= SZ_512)
+ achip->caddr_cycles = 1;
+ else
+ achip->caddr_cycles = 2;
+
+ if (chip->options & NAND_ROW_ADDR_3)
+ achip->raddr_cycles = 3;
+ else
+ achip->raddr_cycles = 2;
+
+ chip->ecc.calc_buf = kmalloc(mtd->oobsize, GFP_KERNEL);
+ chip->ecc.code_buf = kmalloc(mtd->oobsize, GFP_KERNEL);
+ ret = anfc_ecc_init(mtd, &chip->ecc, chip->ecc.mode);
+ if (ret)
+ return ret;
+
+ return 0;
+}
+
+static const struct nand_controller_ops anfc_nand_controller_ops = {
+ .attach_chip = anfc_nand_attach_chip,
+};
+
+static int anfc_nand_chip_init(struct anfc_nand_controller *nfc,
+ struct anfc_nand_chip *anand_chip,
+ struct device_node *np)
+{
+ struct nand_chip *chip = &anand_chip->chip;
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ int ret;
+
+ ret = of_property_read_u32(np, "reg", &anand_chip->csnum);
+ if (ret) {
+ dev_err(nfc->dev, "can't get chip-select\n");
+ return -ENXIO;
+ }
+ mtd->name = devm_kasprintf(nfc->dev, GFP_KERNEL, "arasan_nand.%d",
+ anand_chip->csnum);
+ mtd->dev.parent = nfc->dev;
+
+ chip->chip_delay = 30;
+ chip->controller = &nfc->controller;
+ chip->options = NAND_BUSWIDTH_AUTO | NAND_NO_SUBPAGE_WRITE;
+ chip->bbt_options = NAND_BBT_USE_FLASH;
+ chip->select_chip = anfc_select_chip;
+ chip->setup_data_interface = anfc_setup_data_interface;
+ chip->exec_op = anfc_exec_op;
+ nand_set_flash_node(chip, np);
+
+ anand_chip->spktsize = SDR_MODE_PACKET_SIZE;
+
+ ret = nand_scan(mtd, 1);
+ if (ret) {
+ dev_err(nfc->dev, "nand_scan_tail for NAND failed\n");
+ return ret;
+ }
+
+ return mtd_device_register(mtd, NULL, 0);
+}
+
+static int anfc_probe(struct platform_device *pdev)
+{
+ struct anfc_nand_controller *nfc;
+ struct anfc_nand_chip *anand_chip;
+ struct device_node *np = pdev->dev.of_node, *child;
+ struct resource *res;
+ int err;
+
+ nfc = devm_kzalloc(&pdev->dev, sizeof(*nfc), GFP_KERNEL);
+ if (!nfc)
+ return -ENOMEM;
+
+ nand_controller_init(&nfc->controller);
+ INIT_LIST_HEAD(&nfc->chips);
+ init_completion(&nfc->event);
+ nfc->dev = &pdev->dev;
+ platform_set_drvdata(pdev, nfc);
+ nfc->csnum = -1;
+ nfc->controller.ops = &anfc_nand_controller_ops;
+ res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+ nfc->base = devm_ioremap_resource(&pdev->dev, res);
+ if (IS_ERR(nfc->base))
+ return PTR_ERR(nfc->base);
+ nfc->irq = platform_get_irq(pdev, 0);
+ if (nfc->irq < 0) {
+ dev_err(&pdev->dev, "platform_get_irq failed\n");
+ return -ENXIO;
+ }
+ dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
+ err = devm_request_irq(&pdev->dev, nfc->irq, anfc_irq_handler,
+ 0, "arasannfc", nfc);
+ if (err)
+ return err;
+ nfc->clk_sys = devm_clk_get(&pdev->dev, "clk_sys");
+ if (IS_ERR(nfc->clk_sys)) {
+ dev_err(&pdev->dev, "sys clock not found.\n");
+ return PTR_ERR(nfc->clk_sys);
+ }
+
+ nfc->clk_flash = devm_clk_get(&pdev->dev, "clk_flash");
+ if (IS_ERR(nfc->clk_flash)) {
+ dev_err(&pdev->dev, "flash clock not found.\n");
+ return PTR_ERR(nfc->clk_flash);
+ }
+
+ err = clk_prepare_enable(nfc->clk_sys);
+ if (err) {
+ dev_err(&pdev->dev, "Unable to enable sys clock.\n");
+ return err;
+ }
+
+ err = clk_prepare_enable(nfc->clk_flash);
+ if (err) {
+ dev_err(&pdev->dev, "Unable to enable flash clock.\n");
+ goto clk_dis_sys;
+ }
+
+ for_each_available_child_of_node(np, child) {
+ anand_chip = devm_kzalloc(&pdev->dev, sizeof(*anand_chip),
+ GFP_KERNEL);
+ if (!anand_chip) {
+ of_node_put(child);
+ err = -ENOMEM;
+ goto nandchip_clean_up;
+ }
+ err = anfc_nand_chip_init(nfc, anand_chip, child);
+ if (err) {
+ devm_kfree(&pdev->dev, anand_chip);
+ continue;
+ }
+
+ list_add_tail(&anand_chip->node, &nfc->chips);
+ }
+ return 0;
+
+nandchip_clean_up:
+ list_for_each_entry(anand_chip, &nfc->chips, node)
+ nand_release(nand_to_mtd(&anand_chip->chip));
+ clk_disable_unprepare(nfc->clk_flash);
+clk_dis_sys:
+ clk_disable_unprepare(nfc->clk_sys);
+
+ return err;
+}
+
+static int anfc_remove(struct platform_device *pdev)
+{
+ struct anfc_nand_controller *nfc = platform_get_drvdata(pdev);
+ struct anfc_nand_chip *anand_chip;
+
+ list_for_each_entry(anand_chip, &nfc->chips, node)
+ nand_release(nand_to_mtd(&anand_chip->chip));
+
+ clk_disable_unprepare(nfc->clk_sys);
+ clk_disable_unprepare(nfc->clk_flash);
+
+ return 0;
+}
+
+static const struct of_device_id anfc_ids[] = {
+ { .compatible = "arasan,nfc-v3p10" },
+ { .compatible = "xlnx,zynqmp-nand" },
+ { }
+};
+MODULE_DEVICE_TABLE(of, anfc_ids);
+
+static struct platform_driver anfc_driver = {
+ .driver = {
+ .name = "arasan-nand-controller",
+ .of_match_table = anfc_ids,
+ },
+ .probe = anfc_probe,
+ .remove = anfc_remove,
+};
+module_platform_driver(anfc_driver);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Xilinx, Inc");
+MODULE_DESCRIPTION("Arasan NAND Flash Controller Driver");
--
2.7.4
\
 
 \ /
  Last update: 2018-09-25 14:21    [W:0.257 / U:1.644 seconds]
©2003-2020 Jasper Spaans|hosted at Digital Ocean and TransIP|Read the blog|Advertise on this site